963 resultados para Genome-specific Sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the draft genome sequence of the opportunistic pathogen Propionibacterium acnes type strain NCTC 737 (=ATCC 6919) revealed five genes with sequence identity to the co-haemolytic Christie-Atkins-Munch-Peterson (CAMP) factor of Streptococcus agalactiae. The predicted molecular masses for the expressed proteins ranged from 28 to 30 kDa. The genes were present in each of the three recently identified recA-based phylogenetic groupings of P. acnes (IA, IB and 11), as assessed by PCR amplification. Conserved differences in CAMP factor gene sequences between these three groups were also consistent with their previous phylogenetic designations. All type IA, IB and 11 isolates were positive for the co-haemolytic; reaction on sheep blood agar. Immunoblotting and silver staining of SIDS-PAGE gels, however, revealed differential protein expression of CAMP factors amongst the different groups. Type IB and 11 isolates produced an abundance of CAMP factor 1, detectable by specific antibody labelling and silver staining of SDS-PAGE gels. In contrast, abundant CAMP factor production was lacking in type A isolates, although larger amounts of CAMP factor 2 were detectable by immunoblotting compared with type 11 isolates. While the potential role of the abundant CAMP factor 1 in host colonization or virulence remains to be determined, it should be noted that the type strain of P. acnes used in much of the published literature is a type A isolate and is, therefore, lacking in this attribute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: MicroRNAs (miRNAs) are oligoribonucleotides with an important role in regulation of gene expression at the level of translation. Despite imperfect target complementarity, they can also significantly reduce mRNA levels. The validity of miRNA target gene predictions is difficult to assess at the protein level. We sought, therefore, to determine whether a general lowering of predicted target gene mRNA expression by endogenous miRNAs was detectable within microarray gene expression profiles. RESULTS: The target gene sets predicted for each miRNA were mapped onto known gene expression data from a range of tissues. Whether considering mean absolute target gene expression, rank sum tests or 'ranked ratios', many miRNAs with significantly reduced target gene expression corresponded to those known to be expressed in the cognate tissue. Expression levels of miRNAs with reduced target mRNA levels were higher than those of miRNAs with no detectable effect on mRNA expression. Analysis of microarray data gathered after artificial perturbation of expression of a specific miRNA confirmed the predicted increase or decrease in influence of the altered miRNA upon mRNA levels. Strongest associations were observed with targets predicted by TargetScan. CONCLUSION: We have demonstrated that the effect of a miRNA on its target mRNAs' levels can be measured within a single gene expression profile. This emphasizes the extent of this mode of regulation in vivo and confirms that many of the predicted miRNA-mRNA interactions are correct. The success of this approach has revealed the vast potential for extracting information about miRNA function from gene expression profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rat stomach is rich in endocrine cells. The acid-producing (oxyntic) mucosa contains ECL cells, A-like cells, and somatostatin (D) cells, and the antrum harbours gastrin (G) cells, enterochromaffin (EC) cells and D cells. Although chromogranin A (CgA) occurs in all these cells, its processing appears to differ from one cell type to another. Eleven antisera generated to different regions of rat CgA, two antisera generated to a human (h) CgA sequences, and one to a bovine Ib) CgA sequence, respectively, were employed together with antisera directed towards cell-specific markers such as gastrin (G cells), serotonin (EC cells), histidine decarboxylsae (ECL cells) and somatostatin (D cells) to characterize the expression of CgA and CgA-derived peptides in the various endocrine cell populations of the rat stomach. In the oxyntic mucosa, antisera raised against CgA(291-319) and CGA(316-321) immunostained D cells exclusively, whereas antisera raised against bCgA(82-91) and CgA(121-128) immunostained A-like cells and D cells. Antisera raised against CgA(318-349) and CgA(437-448) immunostained ECL cells and A-like cells, but not D cells. In the antrum, antisera against CgA(291-319) immunostained D cells, and antisera against CgA(351-356) immunostained G cells. Our observations suggest that each individual endocrine cell type in the rat stomach generates a unique mixture of CgA-derived peptides, probably reflecting cell-specific differences in the post-translational processing of CgA and its peptide products. A panel of antisera that recognize specific domains of CgA may help to identify individual endocrine cell populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable population DNA molecular markers are difficult to develop for molluscs, the reasons for which are largely unknown. Identical protocols for microsatellite marker development were implemented in three gastropods. Success rates were lower for Gibbula cineraria compared to Littorina littorea and L. saxatilis. Comparative genomic analysis of 47.2?kb of microsatellite containing sequences (MCS) revealed a high incidence of cryptic repetitive DNA in their flanking regions. The majority of these were novel, and could be grouped into DNA families based upon sequence similarities. Significant inter-specific variation in abundance of cryptic repetitive DNA and DNA families was observed. Repbase scans show that a large proportion of cryptic repetitive DNA was identified as transposable elements (TEs). We argue that a large number of TEs and their transpositional activity may be linked to differential rates of DNA multiplication and recombination. This is likely to be an important factor explaining inter-specific variation in genome stability and hence microsatellite marker development success rates. Gastropods also differed significantly in the type of TEs classes (autonomous vs non-autonomous) observed. We propose that dissimilar transpositional mechanisms differentiate the TE classes in terms of their propensity for transposition, fixation and/or silencing. Consequently, the phylogenetic conservation of non-autonomous TEs, such as CvA, suggests that dispersal of these elements may have behaved as microsatellite-inducing elements. Results seem to indicate that, compared to autonomous, non-autonomous TEs maybe have a more active role in genome rearrangement processes. The implications of the findings for genomic rearrangement, stability and marker development are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that glycation of insulin occurs in pancreatic beta -cells under conditions of hyperglycaemia and that the site of glycation is the N-terminal Phe(1) of the insulin B-chain. To enable evaluation of glycated insulin in diabetes, specific antibodies were raised in rabbits and guinea-pigs by using two synthetic peptides (A: Phe-Val-Asn-Gln-His-Leu-Cys-Tyr, and B: Phe-Val-Asn-Gln-His-Leu-Tyr-Lys) modified by N-terminal glycation and corresponding closely to the N-terminal sequence of the glycated human insulin B-chain. For immunization, the glycated peptides were conjugated either to keyhole limper haemocyanin or ovalbumin using glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester or 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride. Antibody titration curves, obtained using I-125-tyrosylated tracer prepared from glycated peptide A, revealed high-titre antisera in five groups of animals immunized for 8-28 weeks. The highest titres were observed in rabbits and guinea-pigs immunized with peptide B coupled to ovalbumin using glutaraldehyde. Under radioimmunoassay conditions, these antisera exhibited effective dose (median) (ED50) values for glycated insulin of 0.3-15 ng/ml and 0.9-2.5 ng/ml respectively, with negligible cross-reactivity against insulin or other islet peptides. The degree of cross-reaction with glycated proinsulin was approximately 50%. Glycated insulin in plasma of control and hydrocortisone-treated diabetic rats measured using rabbit 3 antiserum (1:10 000 dilution; sensitivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P-SR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. Molecular Psychiatry (2009) 14, 774-785; doi:10.1038/mp.2008.135; published online 30 December 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin ( RELN) gene (p = 2.9 x 10(-5) in women), with a significant gene-sex effect (p = 1.8 x 10(-4)). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 x 10(-3) in women; p = 4.2 x 10(-3) for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 x 10(-7); p = 1.6 x 10(-5) for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of specific oncogenes and tumor suppressor genes in regions of recurrent aneuploidy is a major challenge of molecular cancer research. Using both oligonucleotide single-nucleotide polymorphism and mRNA expression arrays, we integrated genomic and transcriptional information to identify and prioritize candidate cancer genes in regions of increased and decreased chromosomal copy number in a cohort of primary breast cancers. Confirming the validity of this approach, several regions of previously-known copy number (CN) alterations in breast cancer could be successfully reidentified. Focusing on regions of decreased CN, we defined a prioritized list of eighteen candidate genes, which included ARPIN, FBNI, and LZTSI, previously shown to be associated with cancers in breast or other tissue types, and novel genes such as P29, MORF4LI, and TBCID5. One such gene, the RUNX3 transcription factor, was selected for further study. We show that RUNX3 is present at reduced CNs in proportion to the rest of the tumor genome and that RUNX3 CN reductions can also be observed in a breast cancer series from a different center. Using tissue microarrays, we demonstrate in an independent cohort of over 120 breast tissues that RUNX3 protein is expressed in normal breast epithelium but not fat and stromal tissue, and widely down-regulated in the majority of breast cancers (> 85%). In vitro, RUNX3 overexpression suppressed the invasive potential of MDA-MB-231 breast cancer cells in a matrigel assay. Our results demonstrate the utility of integrative genomic approaches to identify novel potential cancer-related genes in primary tumors. This article contains Supplementary Material available at http:// www.interscience.wiley.com/jpages/1045-2257/suppmat. (c) 2006 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background

G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.

Results

Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.

Conclusions

Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.