955 resultados para Generation of Ocean Waves


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined impacts of future scenarios of ocean acidification and global warming on the larvae of a cold-eurythermal spider crab, Hyas araneus L., were investigated in one of its southernmost populations (living around Helgoland, southern North Sea, 54°N) and one of the northernmost populations (Svalbard, North Atlantic, 79°N). Larvae were exposed at temperatures of 3, 9 and 15°C to present day normocapnia (380 ppm CO2) and to CO2 conditions expected for the near or medium-term future (710 ppm by 2100 and 3000 ppm CO2 by 2300 and beyond). Larval development time and biochemical composition were studied in the larval stages Zoea I, II, and Megalopa. Permanent differences in instar duration between both populations were detected in all stages, likely as a result of evolutionary temperature adaptation. With the exception of Zoea II at 3°C and under all CO2 conditions, development in all instars from Svalbard was delayed compared to those from Helgoland, under all conditions. Most prominently, development was much longer and fewer specimens morphosed to the first crab instar in the Megalopa from Svalbard than from Helgoland. Enhanced CO2 levels (710 and particularly 3000 ppm), caused extended duration of larval development and reduced larval growth (measured as dry mass) and fitness (decreasing C/N ratio, a proxy of the lipid content). Such effects were strongest in the zoeal stages in Svalbard larvae, and during the Megalopa instar in Helgoland larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the industrial revolution, [CO2]atm has increased from 280 µatm to levels now exceeding 380 µatm and is expected to rise to 730-1,020 µatm by the end of this century. The consequent changes in the ocean's chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (delta pH 0.5; 0.16 % CO2, ~1,600 µatm) significantly (p < 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (PCO2 at 380, 950, 1250 ppm), temperature (15, 30 degrees C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO(2) and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO(2) level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO(2) reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. (c) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations-control (370 µatm), medium (1800 µatm) and high (4200 µatm)-from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.