979 resultados para Gene isolation
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
The principal objective of this study was to determine if Campylobacter jejuni genotyping methods based upon resolution optimised sets of single nucleotide polymorphisms (SNPs) and binary genetic markers were capable of identifying epidemiologically linked clusters of chicken-derived isolates. Eighty-eight C. jejuni isolates of known flaA RFLP type were included in the study. They encompassed three groups of ten isolates that were obtained at the same time and place and possessed the same flaA type. These were regarded as being epidemiologically linked. Twenty-six unlinked C. jejuni flaA type I isolates were included to test the ability of SNP and binary typing to resolve isolates that were not resolved by flaA RFLP. The remaining isolates were of different flaA types. All isolates were typed by real-time PCR interrogation of the resolution optimised sets of SNPs and binary markers. According to each typing method, the three epidemiologically linked clusters were three different clones that were well resolved from the other isolates. The 26 unlinked C. jejuni flaA type I isolates were resolved into 14 SNP-binary types, indicating that flaA typing can be unreliable for revealing epidemiological linkage. Comparison of the data with data from a fully typed set of isolates associated with human infection revealed that abundant lineages in the chicken isolates that were also found in the human isolates belonged to clonal complex (CC) -21 and CC-353, with the usually rare C-353 member ST-524 being especially abundant in the chicken collection. The chicken isolates selected to be diverse according to flaA were also diverse according to SNP and binary typing. It was observed that CC-48 was absent in the chicken isolates, despite being very common in Australian human infection isolates, indicating that this may be a major cause of human disease that is not chicken associated.
Resumo:
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.
Resumo:
The cattle tick Rhipicephalus microplus (formerly Boophilus microplus) is responsible for severe production losses to the cattle industry worldwide. It has long been known that different breeds of cattle can resist tick infestation to varying degrees; however, the mechanisms by which resistant cattle prevent heavy infestation are largely unknown. The aim of this study was to determine whether gene expression varied significantly between skin sampling sites (neck, chest and tail region), and whether changes in gene expression could be detected in samples taken at tick attachment sites (tick attached to skin sample) compared with samples taken from non-attachment sites (no tick attachment). We present here the results of an experiment examining the expression of a panel of forty-four genes in skin sections taken from Bos indicus (Brahman) cattle of known high resistance, and Bos taurus (Holstein-Friesian) cattle of known low resistance to the cattle tick. The forty-four genes chosen for this study included genes known to be involved in several immune processes, some structural genes, and some genes previously suggested to be of importance in tick resistance by other researchers. The expression of fifteen gene transcripts increased significantly in Holstein-Friesian skin samples at tick attachment sites. The higher expression of many genes involved in innate inflammatory processes in the Holstein-Friesian animals at tick attachment sites suggests this breed is exhibiting a non-directed pathological response to infestation. Of the forty-four genes analysed, no transcripts were detected in higher abundance at tick attachment sites in the Brahman cattle compared with similar samples from the Holstein-Friesian group, nor difference between attachment site and non-attachment site samples within the Brahman group. The results presented here suggest that the means by which these two cattle breeds respond to tick infestation differ and warrant further investigation.
Resumo:
Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.
Resumo:
Redundant DNA can buffer sequence dependent structural deviations from an ideal double helix. Buffering serves a mechanistic function by reducing extraneous conformational effects which could interfere with readout or which would impose energetic constraints on evolution. It also serves an evolutionary function by allowing for gradual variations in conformation-dependent regulation of gene expression. Such gradualism is critical for the rate of evolution. The buffer structure concept provides a new interpretation for repetitive DNA and for exons and introns.
Resumo:
Aims: To identify dominant bacteria in grain (barley)-fed cattle for isolation and future use to increase the efficiency of starch utilization in these cattle. Methods and Results: Total DNA was extracted from samples of the rumen contents from eight steers fed a barley diet for 9 and 14 days. Bacterial profiles were obtained using denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V2/V3 region of the 16S rRNA genes from total bacterial DNA. Apparently dominant bands were excised and cloned, and the clone insert sequence was determined. One of the most common and dominant bacteria present was identified as Ruminococcus bromii. This species was subsequently isolated using traditional culture-based techniques and its dominance in the grain-fed cattle was confirmed using a real-time Taq nuclease assay (TNA) designed for this purpose. In some animals, the population of R. bromii reached densities above 1010R. bromii cell equivalents per ml or approximately 10% of the total bacterial population. Conclusions: Ruminococcus bromii is a dominant bacterial population in the rumen of cattle fed a barley-based diet. Significance and Impact of the Study: Ruminococcus bromii YE282 may be useful as a probiotic inoculant to increase the efficiency of starch utilization in barley-fed cattle. The combination of DGGE and real-time TNA has been an effective process for identifying and targeting for isolation, dominant bacteria in a complex ecosystem.
Resumo:
The o-quinone of DOPA, an important intermediate implicated in many biological processes, has been found to react with methionine. The product has been isolated and studied, and tentative structure has been assigned.
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
Eighteen temperature-sensitive mutants of mycobacteriophage I3 have been isolated and partially characterized. All the mutants were defective in vegetative replication. Based on temperature shift experiments with the temperature sensitive mutants, the thermosensitive phase of the phage development period has been characterized for each mutant. The genes have been mapped by recombination analysis. The early, continuous and middle genes seem to cluster on the genetic map
Resumo:
Sw-5 is an important disease resistance gene of tomato, providing broad resistance to Tomato spotted wilt virus (TSWV). A cleaved amplified polymorphic sequence (CAPS) marker, closely linked to the gene, has been reported. Although the Sw-5 locus has been characterised, a gene-specific marker has not been developed. This paper presents a PCR-based marker-system that consists of the co-amplification of a dominant marker representing the Sw-5 gene sequence, and the modified CAPS marker as a positive control and indicator of genotype.
Packed bed bioreactor for the isolation and expansion of placental-derived Mesenchymal Stromal Cells
Resumo:
Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.
Resumo:
Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.
Resumo:
In Chapter 1, the literature relating to rabies virus and the rabies like lyssaviruses is reviewed. In Chapter 2, data are presented from 1170 diagnostic submissions for ABLV testing by fluorescent antibody test (Centocor FAT). All 27 non-bat submissions were ABLV-negative. Of 1143 bat accessions 74 (16%) were ABLV-positive, including 69 of 974 (7.1%) flying foxes (Pteropus spp.), 5 of 7 (71.4%) Saccolaimus flaviventris (Yellow-bellied sheathtail bats), none of 151 other microchiropteran bats, and none of 11 unidentified bats. Statistical analysis of data from 868 wild Black, Grey-headed, Little Red and Spectacled flying foxes (Pteropus alecto, P. poliocephalus, P. scapulatus, and P. conspicillatus) indicated that three factors; species, health status and age were associated with significant (p< 0.001) differences in the proportion of ABLV-positive bats. Other factors including sex, whether the bat bit a person or animal, region, year, and season submitted, were not associated with ABLV. Case data for 74 ABLV-positive bats, including the circumstances in which they were found and clinical signs, is presented. In Chapter 3, the aetiological diagnosis was investigated for 100 consecutive flying fox submissions with neurological signs. ABLV (32%), spinal and head injuries (29%), and neuro-angiostrongylosis (18%) accounted for most neurological syndromes in flying foxes. No evidence of lead poisoning was found in unwell (n=16) or healthy flying foxes (n=50). No diagnosis was reached for 16 cases, all of which were negative for ABLV by TaqMan PCR. The molecular diversity of ABLV was examined in Chapter 4 by sequencing 36 bases of the leader sequence, the entire N gene, and start of the P gene of 28 isolates from pteropid bats and 3 isolates from Yellow-bellied sheathtail (YBST) bats. Phylogenetic analysis indicated all ABLV isolates clustered together as a discrete group within the Lyssavirus genera closely related to rabies virus and European bat lyssavirus-2 isolates. The ABLV lineage consisted of two variants; one (ybst-ABLV) consisted of isolates only from YBST bats, the other (pteropid-ABLV) was common to Black, Grey-headed and Little Red flying foxes. No associations were found between the sequences and either the geographical location or year found, or individual flying fox species. In Chapter 5, 15 inocula prepared from the brains or salivary glands of naturally-infected bats were evaluated by intracerebral (IC) and footpad (FP) inoculation of Quackenbush mice in order to select and characterize a highly virulent inoculum for further use in bats (Inoculum 5). In Chapter 6, nine Grey-headed flying foxes were inoculated with 105.2 to 105.5 MICED50 of Inoculum 5 divided into four sites, left footpad, pectoral muscle, temporal muscle and muzzle. Another bat was inoculated with half this dose divided into the footpad and pectoral muscle only. Seven of 10 bats developed clinical disease of 1 to 4 days duration between PI-days 10 and 19 and were shown to be ABL-positive by FAT, HAM immunoperoxidase staining, virus isolation in mice, and TaqMan PCR. Five of the seven bats displayed overt aggression, one died during a seizure, and one showed intractable agitation, pacing, tremors, and ataxia. Viral antigen was demonstrated throughout the central and peripheral nervous systems and in the epithelial cells of the submandibular salivary glands (n=4). All affected bats had mild to moderate non-suppurative meningoencephalitis and severe ganglioneuritis. No ABLV was detected in three bats that remained well until the end of the experiment on day 82. One survivor developed a strong but transient antibody response. In Chapter 7, the relative virulence of inocula prepared from the brains and salivary glands of experimentally infected flying foxes was evaluated in mice by IC and FP inoculation and TaqMan assay. The effects in mice were correlated to the TaqMan CT value and indicated a crude association between virulence and CT value that has potential application in the selection of inocula. In Chapter 8, 36 Black and Grey-headed flying foxes were vaccinated with one (day 0) or two (+ day 28) doses of Nobivac rabies vaccine and co-vaccinated with keyhole limpet haemocyanin (KLH). All bats responded to the Nobivac vaccine with a rabies-RFFIT titer > 0.5 IU/mL that is nominally indicative of protective immunity. Plasma from bats with rabies titres >2 IU/mL had cross-neutralising ABLV titres >1:154. A specifically developed ELISA detected a strong but transient response to KLH.
Resumo:
Avian haemophili demonstrating in vitro satellitic growth, also referred to as the V-factor or NAD requirement, have mainly been classified with Avibacterium paragallinarum (Haemophilus paragallinarum), Avibacterium avium (Pasteurella avium), Avibacterium volantium (Pasteurella volantium) and Avibacterium sp. A (Pasteurella species A). The aim of the present study was to assess the taxonomic position of 18 V-factor-requiring isolates of unclassified Haemophilus-like organisms isolated from galliforme, anseriforme, columbiforme and gruiforme birds as well as kestrels and psittacine birds including budgerigars by conventional phenotypic tests and 16S rRNA gene sequencing. All isolates shared phenotypical characteristics which allowed classification with Pasteurellaceae. Haemolysis of bovine red blood cells was negative. Haemin (X-factor) was not required for growth. Maximum-likelihood phylogenetic analysis including bootstrap analysis showed that six isolates were related to the avian 16S rRNA group and were classified as Avibacterium according to 16S rRNA sequence analysis. Surprisingly, the other 12 isolates were unrelated to Avibacterium. Two isolates were unrelated to any of the known 16S rRNA groups of Pasteurellaceae. Two isolates were related to Volucribacter of the avian 16S rRNA group. Seven isolates belonged to the Testudinis 16S rRNA group and out of these, two isolates were closely related to taxa 14 and 32 of Bisgaard, whereas four other isolates were found to form a genus-like group distantly related to taxon 40 and one isolated remained distantly related to other members of the Testudinis group. One isolate was closely related to taxon 26 (a member of Actinobacillus sensu stricto). The study documented major genetic diversity among V-factor-requiring avian isolates beyond the traditional interpretation that they only belong to Avibacterium, underlining the limited value of satellitic growth for identification of avian members of Pasteurellaceae. Our study also emphasized that these organisms will never be isolated without the use of special media satisfying the V-factor requirement.