732 resultados para Galois lattices
Resumo:
The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has x(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar x(i) - x(j)vertical bar
Resumo:
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A class of algebras forms a variety if it is characterised by a collection of identities. There is a well-known method, often called the standard construction, which gives rise to algebras from m-cycle systems. It is known that the algebras arising from {1}-perfect m-cycle systems form a variety for m is an element of {3, 5} only, and that the algebras arising from {1, 2}-perfect m-cycle systems form a variety for m is an element of {3, 5, 7} only. Here we give, for any set K of positive integers, necessary and sufficient conditions under which the algebras arising from K-perfect m-cycle systems form a variety. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
It is shown that in some cases it is possible to reconstruct a block design D uniquely from incomplete knowledge of a minimal defining set for D. This surprising result has implications for the use of minimal defining sets in secret sharing schemes.
Resumo:
The maximum possible volume of a simple, non-Steiner (v, 3, 2) trade was determined for all v by Xhosrovshahi and Torabi (Ars Combinatoria 51 (1999), 211-223), except that in the-case v equivalent to 5 (mod 6), v >= 23, they were only able to provide an upper, bound on the volume. In this paper we construct trades with volume equal to that bound for all v equivalent to 5 (mod 6), thus completing the problem.
Resumo:
An edge-colored graph is a graph H together with a function f:E(H) → C where C is a set of colors. Given an edge-colored graph H, the graph induced by the edges of color c C is denoted by H(c). Let G, H, and J be graphs and let μ be a positive integer. A (J, H, G, μ) edge-colored graph decomposition is a set S = {H 1,H 2,...,H t} of edge-colored graphs with color set C = {c 1, c 2,..., c k} such that Hi ≅ H for 1 ≤ i ≤ t; Hi (cj) ≅ G for 1 ≤ i ≤ t and ≤ j ≤ k; and for j = 1, 2,..., k, each edge of J occurs in exactly μ of the graphs H 1(c j ), H 2(c j ),..., H t (c j ). Let Q 3 denote the 3-dimensional cube. In this paper, we find necessary and sufficient conditions on n, μ and G for the existence of a (K n ,Q 3,G, μ) edge-colored graph decomposition. © Birkhäuser Verlag, Basel 2007.