877 resultados para GENE-RELATED PEPTIDE
Resumo:
Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.
Resumo:
Our laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.
Resumo:
Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.
Resumo:
BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.
Resumo:
From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance.
Resumo:
BACKGROUND: Telomere-related genes play an important role in carcinogenesis and progression of prostate cancer (PCa). It is not fully understood whether genetic variations in telomere-related genes are associated with development and progression in PCa patients. METHODS: Six potentially functional single-nucleotide polymorphisms (SNPs) of three key telomere-related genes were evaluated in 1015 PCa cases and 1052 cancer-free controls, to test their associations with risk of PCa. Among 426 PCa patients who underwent radical prostatectomy (RP), the prognostic significance of the studied SNPs on biochemical recurrence (BCR) was also assessed using the Kaplan-Meier analysis and Cox proportional hazards regression model. The relative telomere lengths (RTLs) were measured in peripheral blood leukocytes using real-time PCR in the RP patients. RESULTS: TEP1 rs1760904 AG/AA genotypes were significantly associated with a decreased risk of PCa (odds ratio (OR): 0.77, 95% confidence interval (CI): 0.64-0.93, P=0.005) compared with the GG genotype. By using median RTL as a cutoff level, RP patients with TEP1 rs1760904 AG/AA genotypes tended to have a longer RTL than those with the GG genotype (OR: 1.55, 95% CI: 1.04-2.30, P=0.031). A significant interaction between TEP1 rs1713418 and age in modifying PCa risk was observed (P=0.005). After adjustment for clinicopathologic risk factors, the presence of heterozygotes or rare homozygotes of TEP1 rs1760904 and TNKS2 rs1539042 were associated with BCR in the RP cohorts (hazard ratio: 0.53, 95% CI: 0.36-0.79, P=0.002 and hazard ratio: 1.67, 95% CI: 1.07-2.48, P=0.017, respectively). CONCLUSIONS: These data suggest that genetic variations in the TEP1 gene may be biomarkers for risk of PCa and BCR after RP.
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.
Resumo:
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.
Resumo:
Convergent biochemical and genetic evidence suggests that the formation of alpha-synuclein (alpha-syn) protein deposits is an important and, probably, seminal step in the development of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). It has been reported that transgenic animals overexpressing human alpha-syn develop lesions similar to those found in the brain in PD, together with a progressive loss of dopaminergic cells and associated abnormalities of motor function. Inhibiting and/or reversing alpha-syn self-aggregation could, therefore, provide a novel approach to treating the underlying cause of these diseases. We synthesized a library of overlapping 7-mer peptides spanning the entire alpha-syn sequence, and identified amino acid residues 64-100 of alpha-syn as the binding region responsible for its self-association. Modified short peptides containing alpha-syn amino acid sequences from part of this binding region (residues 69-72), named alpha-syn inhibitors (ASI), were found to interact with full-length alpha-syn and block its assembly into both early oligomers and mature amyloid-like fibrils. We also developed a cell-permeable inhibitor of alpha-syn aggregation (ASID), using the polyarginine peptide delivery system. This ASID peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-syn(A53T), a familial PD-associated mutation. ASI peptides without this delivery system did not reverse levels of Fe(II)-induced DNA damage. Furthermore, the ASID peptide increased (P
Resumo:
Purpose: Age related macular degeneration (AMD) is a common cause of severe vision loss. Identification of genes involved in AMD will facilitate early detection and ultimately help to identify pathways for treatment for this disorder. The A16,263G mutation in the HEMICENTIN-1 gene produces a non-conservative substitution of arginine for glutamine at codon 5345 which has been implicated in familial AMD. The aim of this study is to develop a rapid diagnostic assay for the detection of this mutation and to evaluate its frequency in a sample of AMD patients. Methods: A primer probe set was designed from exon 104 of the HEMICENTIN-1 gene to differentiate between mutant and wild type alleles. A region spanning the mutation was amplified by PCR using a LightCycler (Roche Diagnostic). The mutation was then detected by melt curve analysis of the hybrid formed between the PCR product and a specific fluorescent probe. The frequency of the mutation within the Northern Ireland population was evaluated by assaying 508 affected AMD patients, 25 possibly affected and 163 controls. Results: This assay clearly discriminates between the A16,263G mutant and wild type HEMICENTIN-1 alleles. The wild type sequence has a single base mismatch with the probe which decreases the stability of the hybrid, resulting in a lower TM (TM=51.27 °C) than that observed for the perfectly matched mutant allele (TM=59.9 °C). The mutant allele was detected in only one of the 696 subjects, an affected AMD patient. Conclusions: We describe a rapid assay for the genotyping of the Gln5345Arg mutation using real-time fluorescence PCR to facilitate rapid processing of samples through combined amplification and detection steps. These characteristics are suitable for a clinical setting where high throughput diagnostic procedures are required. The frequency of this mutation within the Northern Ireland population has been estimated at 0.2%, concurring with previous findings that this mutation is a rare variant associated with AMD. A rapid diagnostic assay will facilitate a reliable and convenient evaluation of the frequency of the Gln5345Arg mutation and its association with AMD within other populations.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Increased levels of neuropeptide Y correlate with severity of left ventricular hypertrophy in vivo. At cardiomyocyte level, hypertrophy is characterised by increased mass and altered phenotype. The aims were to determine the contributions of increased synthesis and reduced degradation of protein to neuropeptide Y-mediated increase in mass, assess effects on gene expression, and characterise neuropeptide Y Y receptor subtype involvement. Neuropeptide Y (10 nM) increased protein mass of adult rat ventricular cardiomyocytes maintained in culture (24 h) (16%>basal) and de novo protein synthesis (incorporation of [14C]phenylalanine) (18%>basal). Neuropeptide Y (100 nM) prevented degradation of existing protein at 8 h. Actinomycin D (5 µM) attenuated increases in protein mass to neuropeptide Y (=1 nM) but not to neuropeptide Y (10 nM). [Leu31, Pro34]neuropeptide Y (10 nM), an agonist at neuropeptide Y Y1 receptors, increased protein mass (25%>basal) but did not stimulate protein synthesis. Neuropeptide Y-(3–36) (10 nM), an agonist at neuropeptide Y Y2 receptors, increased protein mass (29%>basal) and increased protein synthesis (13%>basal), respectively. Actinomycin D (5 µM) abolished the increase in protein mass elicited by neuropeptide Y-(3–36) but not that by [Leu31, Pro34]neuropeptide Y. BIBP3226 [(R)-N2-(diphenylacetyl)-N-(4-hydroxyphenylmethyl)-d-arginine amide] (1 µM), a neuropeptide Y Y1 receptor subtype-selective antagonist, and T4 [neuropeptide Y-(33–36)]4, a neuropeptide Y Y2 receptor subtype-selective antagonist, attenuated the increase in protein mass to 100 nM neuropeptide Y by 68% and 59%, respectively. Neuropeptide Y increased expression of the constitutive gene, myosin light chain-2 (MLC-2), maximally at 12 h (4.7-fold>basal) but did not induce (t=36 h) expression of foetal genes (atrial natriuretic peptide (ANP), skeletal-a-actin and myosin heavy chain-ß). This increase was attenuated by 86% and 51%, respectively, by BIBP3226 (1 µM) and T4 [neuropeptide Y-(33–36)]4 (100 nM). [Leu31, Pro34]neuropeptide Y (100 nM) (2.4-fold>basal) and peptide YY-(3–36) (100 nM) (2.3 fold>basal) increased expression of MLC-2 mRNA at 12 h. In conclusion, initiation of cardiomyocyte hypertrophy by neuropeptide Y requires activation of both neuropeptide Y Y1 and neuropeptide Y Y2 receptors and is associated with enhanced synthesis and attenuated degradation of protein together with increased expression of constitutive genes but not reinduction of foetal genes.
Resumo:
Maximakinin is an N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the venom of a Chinese toad (Bombina maxima) that displays highly selective activity at mammalian arterial smooth muscle receptors. In this study, we report that incubation of maximakinin with either kallikrein or human saliva generates catabolites with enhanced bioactivity that retain the tissue selective effects of the parent molecule. In addition, we have observed that kallikrein rapidly cleaves the C-terminal arginyl residue of both maximakinin and bradykinin – a cleavage hitherto considered to be performed by a carboxypeptidase that facilitates selective bradykinin receptor targeting. Maximakinin has thus evolved as a `smart' defensive weapon in the toad with inherent resistance to the signal-terminating protease hardware in the potential predator. Thus, natural selection of amphibian skin peptides for antipredator defence, through interspecies delivery by an exogenous secretory mode, produces subtle structural stabilization modifications that can potentially provide new insights for the design of orally active and selectively targeted peptide therapeutics.