749 resultados para Fuzzy Sets
Resumo:
The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identitication and quantification of the hazards associated with chemical industries. This research work presents the results of a consequence analysis carried out to assess the damage potential of the hazardous material storages in an industrial area of central Kerala, India. A survey carried out in the major accident hazard (MAH) units in the industrial belt revealed that the major hazardous chemicals stored by the various industrial units are ammonia, chlorine, benzene, naphtha, cyclohexane, cyclohexanone and LPG. The damage potential of the above chemicals is assessed using consequence modelling. Modelling of pool fires for naphtha, cyclohexane, cyclohexanone, benzene and ammonia are carried out using TNO model. Vapor cloud explosion (VCE) modelling of LPG, cyclohexane and benzene are carried out using TNT equivalent model. Boiling liquid expanding vapor explosion (BLEVE) modelling of LPG is also carried out. Dispersion modelling of toxic chemicals like chlorine, ammonia and benzene is carried out using the ALOHA air quality model. Threat zones for different hazardous storages are estimated based on the consequence modelling. The distance covered by the threat zone was found to be maximum for chlorine release from a chlor-alkali industry located in the area. The results of consequence modelling are useful for the estimation of individual risk and societal risk in the above industrial area.Vulnerability assessment is carried out using probit functions for toxic, thermal and pressure loads. Individual and societal risks are also estimated at different locations. Mapping of threat zones due to different incident outcome cases from different MAH industries is done with the help of Are GIS.Fault Tree Analysis (FTA) is an established technique for hazard evaluation. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. However it is often difficult to estimate precisely the failure probability of the components due to insufficient data or vague characteristics of the basic event. It has been reported that availability of the failure probability data pertaining to local conditions is surprisingly limited in India. This thesis outlines the generation of failure probability values of the basic events that lead to the release of chlorine from the storage and filling facility of a major chlor-alkali industry located in the area using expert elicitation and proven fuzzy logic. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor invo1ved in expert elicitation .
Resumo:
The main objective of this thesis was to extend some basic concepts and results in module theory in algebra to the fuzzy setting.The concepts like simple module, semisimple module and exact sequences of R-modules form an important area of study in crisp module theory. In this thesis generalising these concepts to the fuzzy setting we have introduced concepts of ‘simple and semisimple L-modules’ and proved some results which include results analogous to those in crisp case. Also we have defined and studied the concept of ‘exact sequences of L-modules’.Further extending the concepts in crisp theory, we have introduced the fuzzy analogues ‘projective and injective L-modules’. We have proved many results in this context. Further we have defined and explored notion of ‘essential L-submodules of an L-module’. Still there are results in crisp theory related to the topics covered in this thesis which are to be investigated in the fuzzy setting. There are a lot of ideas still left in algebra, related to the theory of modules, such as the ‘injective hull of a module’, ‘tensor product of modules’ etc. for which the fuzzy analogues are not defined and explored.
Resumo:
In this paper some properties of fuzzy bridges are studied.A characterization of fuzzy trees is obtained using these concepts.
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.
Resumo:
It is believed that every fuzzy generalization should be formulated in such a way that it contain the ordinary set theoretic notion as a special case. Therefore the definition of fuzzy topology in the line of C.L.CHANG E9] with an arbitrary complete and distributive lattice as the membership set is taken. Almost all the results proved and presented in this thesis can, in a sense, be called generalizations of corresponding results in ordinary set theory and set topology. However the tools and the methods have to be in many of the cases, new. Here an attempt is made to solve the problem of complementation in the lattice of fuzzy topologies on a set. It is proved that in general, the lattice of fuzzy topologies is not complemented. Complements of some fuzzy topologies are found out. It is observed that (L,X) is not uniquely complemented. However, a complete analysis of the problem of complementation in the lattice of fuzzy topologies is yet to be found out
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case
Resumo:
This paper discusses our research in developing a generalized and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that concise and accurate classifiers can be constructed to detect anomalies. An overview of the approach that we have implemented is provided.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an important role in the development of many cancers, including CRC. Therefore, the identification of cancer related miRNAs and their target genes are important for cancer biology research. In this paper, we applied TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights into the pathogenesis of cancer
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes
Resumo:
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.