981 resultados para Frequent Sequential Patterns
Resumo:
Since the opening in 2003 of the Couple & Family Consultation Unit (UCCF) at Prangins Hospital, we have met urgent demands and observed that the suffering systems (i.e., couples and families) couldn't face any waiting period. So in 2007 an Emergency/Crisis Facility was created, based on the hypothesis that there is no contra-indication to systemic emergency care, if one understands and structures both crisis and treatment. We studied the suffering population in demand and the emergency/crisis issues and assessed therapy efficiency. Then we observed that treating suffering systems in emergency does produce therapeutic gain in terms of crisis resolution and patients' satisfaction. Those treatments refer to public health issues, as considered the human, social and financial cost of couples/families dysfunctions.
Resumo:
A century ago, the majority of workers were employed near their homes—on farms or in cities and towns. As industrialization increased and suburbs surrounded central cities, commuting meant going from homes in suburbs to jobs in cities. Today, there is a growing trend of workers commuting between suburbs. On any given day, 61,775 workers commute to jobs in Iowa counties other than the one in which they live. The most important reason for increased commuting has been employment growth. Rising incomes and the growth of suburbs have also been factors. In the past, the increased employment of women added to the number of commuters. Commuting patterns are a key consideration in transportation planning. In more urban states than Iowa, there is concern that the use of mass transit continues to decline. In Iowa, where so much of our commuting is between counties, private vehicles are often the only practical means of getting to and from work. On any given day, 1,155,008 single-occupancy vehicles are driven to and from jobs somewhere in Iowa. At the same time, an additional158,699 workers share rides by participating in carpools.
Resumo:
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D(2), +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Resumo:
Background: Different regions in a genome evolve at different rates depending on structural and functional constraints. Some genomic regions are highly conserved during metazoan evolution, while other regions may evolve rapidly, either in all species or in a lineage-specific manner. A strong or even moderate change in constraints in functional regions, for example in coding regions, can have significant evolutionary consequences. Results: Here we discuss a novel framework, 'BaseDiver', to classify groups of genes in humans based on the patterns of evolutionary constraints on polymorphic positions in their coding regions. Comparing the nucleotide-level divergence among mammals with the extent of deviation from the ancestral base in the human lineage, we identify patterns of evolutionary pressure on nonsynonymous base-positions in groups of genes belonging to the same functional category. Focussing on groups of genes in functional categories, we find that transcription factors contain a significant excess of nonsynonymous base-positions that are conserved in other mammals but changed in human, while immunity related genes harbour mutations at base-positions that evolve rapidly in all mammals including humans due to strong preference for advantageous alleles. Genes involved in olfaction also evolve rapidly in all mammals, and in humans this appears to be due to weak negative selection. Conclusion: While recent studies have identified genes under positive selection in humans, our approach identifies evolutionary constraints on Gene Ontology groups identifying changes in humans relative to some of the other mammals.
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.
Resumo:
The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.
Resumo:
In this paper we present a description of the role of definitional verbal patterns for the extraction of semantic relations. Several studies show that semantic relations can be extracted from analytic definitions contained in machine-readable dictionaries (MRDs). In addition, definitions found in specialised texts are a good starting point to search for different types of definitions where other semantic relations occur. The extraction of definitional knowledge from specialised corpora represents another interesting approach for the extraction of semantic relations. Here, we present a descriptive analysis of definitional verbal patterns in Spanish and the first steps towards the development of a system for the automatic extraction of definitional knowledge.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
In this study we assessed blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) in response to 13 picture series in 37 participants in order to investigate their hemodynamic response associated with activation of the appetitive and defensive motivational systems underlying emotional experience. BP and SV, but not TPR, increased with increasing self-rated arousal, whereas HR decelerated more in response to negative than positive and neutral pictures. These findings suggest that modulation of the cardiovascular response to pictures is primarily myocardial. The observed response pattern is consistent with a configuration of cardiac sympathetic-parasympathetic coactivation. The relationships between self-rated arousal, BP, and SV were mainly exhibited by men, suggesting that increases in the sympathetic inotropic effect to the heart with self-rated arousal may be larger in men than in women.
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
OBJECTIVES: The objectives were to identify the social and medical factors associated with emergency department (ED) frequent use and to determine if frequent users were more likely to have a combination of these factors in a universal health insurance system. METHODS: This was a retrospective chart review case-control study comparing randomized samples of frequent users and nonfrequent users at the Lausanne University Hospital, Switzerland. The authors defined frequent users as patients with four or more ED visits within the previous 12 months. Adult patients who visited the ED between April 2008 and March 2009 (study period) were included, and patients leaving the ED without medical discharge were excluded. For each patient, the first ED electronic record within the study period was considered for data extraction. Along with basic demographics, variables of interest included social (employment or housing status) and medical (ED primary diagnosis) characteristics. Significant social and medical factors were used to construct a logistic regression model, to determine factors associated with frequent ED use. In addition, comparison of the combination of social and medical factors was examined. RESULTS: A total of 359 of 1,591 frequent and 360 of 34,263 nonfrequent users were selected. Frequent users accounted for less than a 20th of all ED patients (4.4%), but for 12.1% of all visits (5,813 of 48,117), with a maximum of 73 ED visits. No difference in terms of age or sex occurred, but more frequent users had a nationality other than Swiss or European (n = 117 [32.6%] vs. n = 83 [23.1%], p = 0.003). Adjusted multivariate analysis showed that social and specific medical vulnerability factors most increased the risk of frequent ED use: being under guardianship (adjusted odds ratio [OR] = 15.8; 95% confidence interval [CI] = 1.7 to 147.3), living closer to the ED (adjusted OR = 4.6; 95% CI = 2.8 to 7.6), being uninsured (adjusted OR = 2.5; 95% CI = 1.1 to 5.8), being unemployed or dependent on government welfare (adjusted OR = 2.1; 95% CI = 1.3 to 3.4), the number of psychiatric hospitalizations (adjusted OR = 4.6; 95% CI = 1.5 to 14.1), and the use of five or more clinical departments over 12 months (adjusted OR = 4.5; 95% CI = 2.5 to 8.1). Having two of four social factors increased the odds of frequent ED use (adjusted = OR 5.4; 95% CI = 2.9 to 9.9), and similar results were found for medical factors (adjusted OR = 7.9; 95% CI = 4.6 to 13.4). A combination of social and medical factors was markedly associated with ED frequent use, as frequent users were 10 times more likely to have three of them (on a total of eight factors; 95% CI = 5.1 to 19.6). CONCLUSIONS: Frequent users accounted for a moderate proportion of visits at the Lausanne ED. Social and medical vulnerability factors were associated with frequent ED use. In addition, frequent users were more likely to have both social and medical vulnerabilities than were other patients. Case management strategies might address the vulnerability factors of frequent users to prevent inequities in health care and related costs.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
The shape of alliance processes over the course of psychotherapy has already been studied in several process-outcome studies on very brief psychotherapy. The present study applies the shape-of-change methodology to short-term dynamic psychotherapies and complements this method with hierarchical linear modeling. A total of 50 psychotherapies of up to 40 sessions were included. Alliance was measured at the end of each session. The results indicate that a linear progression model is most adequate. Three main patterns were found: stable, linear, and quadratic growth. The linear growth pattern, along with the slope parameter, was related to treatment outcome. This study sheds additional light on alliance process research, underscores the importance of linear alliance progression for outcome, and also fosters a better understanding of its limitations.
Resumo:
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.