897 resultados para Fourier-transform
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ca(Zr0.05Ti0.95)O-3 (CZT) thin films were prepared by the polymeric precursor method by spin-coating process. The films were deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates and annealed at 650 degrees C for 2,4, and 6 It in oxygen atmosphere. Structure and morphology of the CZT thin films were characterized by the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FEG-SEM). XRD revealed that the film is free of secondary phases and crystallizes in the orthorhombic structure. The annealing time influences the grain size, lattices parameter and in the film thickness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, we report on the synthesis of SrMoO4 powders by co-precipitation method and processed in a microwave-hydrothermal at 413 K for 5 h. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL). XRD analyses revealed that the SrMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. FT-Raman investigations showed the presence of Raman-active vibration modes correspondent for this molybdate. UV-vis technique was employed to determine the optical band gap of this material. SrMoO4 powders exhibit an intense PL emission at room temperature with maximum peak at 540 nm (green region) when excited by 488 nm wavelength of an argon ion laser. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glasses having the composition (100 - x)As2P2S8-xGa(2)S(3) with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (T-g) and the stability parameter against crystallization (T-x - T-g) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and P-31 nuclear magnetic resonance. on the basis of the observed vibrations and the strength of the P-31-P-31 homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x <= 20% we may have the formation of GaS4E- groups (E = nonbonding electron), and for x >= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS4/2 unit (Q(4)) species carrying a single positive formal charge.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)