961 resultados para Flows on surfaces
Resumo:
Post-processing a finite element solution is a well-known technique, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Postprocessing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. Consequently such an approach can be exceptionally good in modelling of resin infiltration under quasi steady-state assumption by remeshing techniques and with explicit time integration, because only the free-front normal velocities are necessary to advance the resin front to the next position. The new contribution is the post-processing analysis and implementation of the freeboundary velocities of mesolevel infiltration analysis. Such implementation ensures better accuracy on even coarser meshes, which in consequence reduces the computational time also by the possibility of employing larger time steps.
Resumo:
Annals of Microbiology, 59 (4) 705-713 (2009)
Resumo:
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Resumo:
River Flow 2010
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Proceedings of the Institution of Civil Engineers - Water Management 163 Issue WM6
Resumo:
Canadian Journal of Civil Engineering 36(10) 1605–16
Resumo:
Methanol decomposition is one of the key reactions in direct methanol fuel cell (DMFC) state-of-the-art technology, research, and development. However, its mechanism still presents many uncertainties, which, if answered, would permit us to refine the manufacture of DMFCs. The mechanism of methanol decomposition on ruthenium surfaces was investigated using density functional theory and a periodic supercell approach. The possible pathways, involving either initial C−H, C−O or O−H scission, were defined from experimental evidence regarding the methanol decomposition on ruthenium and other metallic surfaces. The study yielded the O−H scission pathway as having both the most favorable energetics and kinetics. The computational data, which present a remarkable closeness with the experimental results, also indicate methanol adsorption, the starting point in all possible pathways, to be of weak nature, implying a considerable rate of methanol desorption from the ruthenium, compromising the reaction.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Do information flows matter for remittance behavior? We design and implement a randomized control trial to quantitatively assess the role of communication between migrants and their contacts abroad on the extent and value of remittance flows. In the experiment, a random sample of 1,500 migrants residing in Ireland was offered the possibility of contacting their networks outside the host country for free over a varying number of months. We find a sizable, positive impact of our intervention on the value of migrant remittances sent. Our results exclude that the remittance effect we identify is a simple substitution effect. Instead, our analysis points to this effect being a likely result of improved information via factors such as better migrant control over remittance use, enhanced trust in remittance channels due to experience sharing, or increased remittance recipients’ social pressure on migrants.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
The main results presented in this PhD Dissertation have been published in interna-tional journals included in the Science Citation Index (SCI)
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.