941 resultados para Flow Field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally there have been a number of concerns about the development of genetically modified crops many of which relate to the implications of gene flow at various levels. In Europe these concerns have led the European Union (EU) to promote the concept of 'coexistence' to allow the freedom to plant conventional and genetically modified (GM) varieties but to minimise the presence of transgenic material within conventional crops. Should a premium for non-GM varieties emerge on the market, the presence of transgenes would generate a 'negative externality' to conventional growers. The establishment of maximum tolerance level for the adventitious presence of GM material in conventional crops produces a threshold effect in the external costs. The existing literature suggests that apart from the biological characteristics of the plant under consideration (e.g. self-pollination rates, entomophilous species, anemophilous species, etc.), gene flow at the landscape level is affected by the relative size of the source and sink populations and the spatial arrangement of the fields in the landscape. In this paper, we take genetically modified herbicide tolerant oilseed rape (GM HT OSR) as a model crop. Starting from an individual pollen dispersal function, we develop a spatially explicit numerical model in order to assess the effect of the size of the source/sink populations and the degree of spatial aggregation on the extent of gene flow into conventional OSR varieties under two alternative settings. We find that when the transgene presence in conventional produce is detected at the field level, the external cost will increase with the size of the source area and with the level of spatial disaggregation. on the other hand when the transgene presence is averaged among all conventional fields in the landscape (e.g. because of grain mixing before detection), the external cost will only depend on the relative size of the source area. The model could readily be incorporated into an economic evaluation of policies to regulate adoption of GM HT OSR. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats. Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TAs). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the contour, with a beetle bank acting as a vegetative barrier partway up the slope, and one had a mixed direction cultivation treatment, with cultivation and drilling conducted up and down the slope and all subsequent operations conducted on the contour. In the second year, this mixed treatment was replaced with contour cultivation. Results showed no significant reduction in runoff, sediment losses or total phosphorus losses from minimum tillage when compared to the conventional plough treatment, but there were increased losses of total dissolved phosphorus with minimum tillage. The mixed direction cultivation treatment increased surface runoff and losses of sediment and phosphorus. Increasing surface roughness with contour cultivation reduced surface runoff compared to up and down slope cultivation in both the plough and minimum tillage treatment areas, but this trend was not significant. Sediment and phosphorus losses in the contour cultivation treatment followed a very similar pattern to runoff. Combining contour cultivation with a vegetative barrier in the form of a beetle bank to reduce slope length resulted in a non-significant reduction in surface runoff, sediment and total phosphorus when compared to up and down slope cultivation, but there was a clear trend towards reduced losses. However, the addition of a beetle bank did not provide a significant reduction in runoff, sediment losses or total phosphorus losses when compared to contour cultivation, suggesting only a marginal additional benefit. The economic implications for farmers of the different treatment options are investigated in order to assess their suitability for implementation at a field scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT), a Lagrangian chemistry model, has been evaluated using atmospheric chemical measurements collected during the East Atlantic Summer Experiment 1996 (EASE '96). This field campaign was part of the UK Natural Environment Research Council's (NERC) Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) programme, conducted at Mace Head, Republic of Ireland, during July and August 1996. The model includes a description of gas-phase tropospheric chemistry, and simple parameterisations for surface deposition, mixing from the free troposphere and emissions. The model generally compares well with the measurements and is used to study the production and loss of O3 under a variety of conditions. The mean difference between the hourly O3 concentrations calculated by the model and those measured is 0.6 ppbv with a standard deviation of 8.7 ppbv. Three specific air-flow regimes were identified during the campaign – westerly, anticyclonic (easterly) and south westerly. The westerly flow is typical of background conditions for Mace Head. However, on some occasions there was evidence of long-range transport of pollutants from North America. In periods of anticyclonic flow, air parcels had collected emissions of NOx and VOCs immediately before arriving at Mace Head, leading to O3 production. The level of calculated O3 depends critically on the precise details of the trajectory, and hence on the emissions into the air parcel. In several periods of south westerly flow, low concentrations of O3 were measured which were consistent with deposition and photochemical destruction inside the tropical marine boundary layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be understood quantitatively. In this study, laboratory measurements of the terminal velocity vt for a variety of ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles settling in air, have been analyzed and compared to common methods of computing vt from the literature. It is observed that while these methods work well for a number of particle types, they fail for particles with open geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all overestimated. These particle types are important in many cloud types: aggregates in particular often dominate snow precipitation at the ground and vertically pointing Doppler radar measurements. Based on the laboratory data, a simple modification to previous computational methods is proposed, based on the area ratio. This new method collapses the available drag data onto an approximately universal curve, and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases. Comparison with the (much more scattered) measurements of ice particles falling in air show strong support for this new method, with the area ratio bias apparently eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DAPPLE (Dispersion of Air Pollutants and their Penetration into the Local Environment) project seeks to characterise near-field urban atmospheric dispersion using a multidisciplinary approach. In this paper we report on the first tracer dispersion experiment carried out in May 2003. Results of concurrent meteorological measurements are presented. Variations of receptor tracer concentration with time are presented. Meteorological observations suggest that in-street channelling and flow-switching at intersections take place. A comparison between roof top and surface measurements suggest that rapid vertical mixing occurs, and a comparison between a simple dispersion model and maximum concentrations observed are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the behavior of a two-dimensional inviscid and incompressible flow when pushed out of dynamical equilibrium. We use the two-dimensional vorticity equation with spectral truncation on a rectangular domain. For a sufficiently large number of degrees of freedom, the equilibrium statistics of the flow can be described through a canonical ensemble with two conserved quantities, energy and enstrophy. To perturb the system out of equilibrium, we change the shape of the domain according to a protocol, which changes the kinetic energy but leaves the enstrophy constant. We interpret this as doing work to the system. Evolving along a forward and its corresponding backward process, we find numerical evidence that the distributions of the work performed satisfy the Crooks relation. We confirm our results by proving the Crooks relation for this system rigorously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat and mass balance of the Arctic Ocean is very sensitive to the growth and decay of sea ice and the interaction between the heat and salt fields in the oceanic boundary layer. The hydraulic roughness of sea ice controls the detailed nature of turbulent fluxes in the boundary layer and hence is an important ingredient in model parameterizations. We describe a novel mechanism for the generation of corrugations of the sea ice–ocean interface, present a mathematical analysis elucidating the mechanism, and present numerical calculations for geophysically relevant conditions. The mechanism relies on brine flows developing in the sea ice due to Bernoulli suction by flow of ocean past the interface. For oceanic shears at the ice interface of 0.2 s−1, we expect the corrugations to form with a wavelength dependent upon the permeability structure of the sea ice which is described herein. The mechanism should be particularly important during sea ice formation in wind-maintained coastal polynyas and in leads. This paper applies our earlier analyses of the fundamental instability to field conditions and extends it to take account of the anisotropic and heterogeneous permeability of sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d)composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = χ · (IDV(1d) − β)α with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external held, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G' was presented for the purpose of investigating this influence.