659 resultados para Feshbach resonances


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work three different metallic metamaterials (MMs) structures such as asymmetric split ring resonators (A-SRRs), dipole and split H-shaped (ASHs) structures that support plasmonic resonances have been developed. The aim of the work involves the optimization of photonic sensor based on plasmonic resonances and surface enhanced infrared absorption (SEIRA) from the MM structures. The MMs structures were designed to tune their plasmonic resonance peaks in the mid-infrared region. The plasmonic resonance peaks produced are highly dependent on the structural dimension and polarisation of the electromagnetic (EM) source. The ASH structure particularly has the ability to produce the plasmonic resonance peak with dual polarisation of the EM source. The double resonance peaks produced due to the asymmetric nature of the structures were optimized by varying the fundamental parameters of the design. These peaks occur due to hybridization of the individual elements of the MMs structure. The presence of a dip known as a trapped mode in between the double plasmonic peaks helps to narrow the resonances. A periodicity greater than twice the length and diameter of the metallic structure was applied to produce narrow resonances for the designed MMs. A nanoscale gap in each structure that broadens the trapped mode to narrow the plasmonic resonances was also used. A thickness of 100 nm gold was used to experimentally produce a high quality factor of 18 in the mid-infrared region. The optimised plasmonic resonance peaks was used for detection of an analyte, 17β-estradiol. 17β-estradiol is mostly responsible for the development of human sex organs and can be found naturally in the environment through human excreta. SEIRA was the method applied to the analysis of the analyte. The work is important in the monitoring of human biology and in water treatment. Applying this method to the developed nano-engineered structures, enhancement factors of 10^5 and a sensitivity of 2791 nm/RIU was obtained. With this high sensitivity a figure of merit (FOM) of 9 was also achieved from the sensors. The experiments were verified using numerical simulations where the vibrational resonances of the C-H stretch from 17β-estradiol were modelled. Lastly, A-SRRs and ASH on waveguides were also designed and evaluated. These patterns are to be use as basis for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems based on a Hamiltonian formalism. In absence of dissipation, the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black hole binaries at the end of the inspiral phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin-orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter's dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a formalism designed to model tidal interaction with a viscoelastic body made of Maxwell material. Our approach remains regular for any spin rate and orientation, and for any orbital configuration including high eccentricities and close encounters. The method is to integrate simultaneously the rotation and the position of the planet as well as its deformation. We provide the equations of motion both in the body frame and in the inertial frame. With this study, we generalize preexisting models to the spatial case and to arbitrary multipole orders using a formalism taken from quantum theory. We also provide the vectorial expression of the secular tidal torque expanded in Fourier series. Applying this model to close-in exoplanets, we observe that if the relaxation time is longer than the revolution period, the phase space of the system is characterized by the presence of several spin-orbit resonances, even in the circular case. As the system evolves, the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along most of these resonances, but we observe a case where the planet tilt is instead growing. These conclusions derived from the secular torque are successfully tested with numerical integrations of the instantaneous equations of motion on HD 80606 b. Our formalism is also well adapted to close-in super-Earths in multiplanet systems which are known to have non-zero mutual inclinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin-film photovoltaics have provided a critical design avenue to help decrease the overall cost of solar power. However, a major drawback of thin-film solar cell technology is decreased optical absorption, making compact, high-quality antireflection coatings of critical importance to ensure that all available light enters the cell. In this thesis, we describe high efficiency thin-film InP and GaAs solar cells that utilize a periodic array of nanocylinders as antireflection coatings. We use coupled optical and electrical simulations to find that these nanophotonic structures reduce the solar-weighted average reflectivity of InP and GaAs solar cells to around 1.3 %, outperforming the best double-layer antireflection coatings. The coupling between Mie scattering resonances and thin-film interference effects accurately describes the optical enhancement provided by the nanocylinders. The spectrally resolved reflectivity and J-V characteristics of the devices under AM1.5G solar illumination are determined via the coupled optical and electrical simulations, resulting in predicted power conversion efficiencies > 23 %. We conclude that the nanostructured coatings reduce reflection without negatively affecting the electronic properties of the InP and GaAs solar cells by separating the nanostructured optical components from the active layer of the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leading approach to everyday aesthetics for the past few decades has departed from analytic philosophical grounds, generating some tensions or dichotomies regarding its foundational cornerstones: the ordinary vs. extraordinary character of everyday aesthetic experience, contextual familiarity vs. strangeness, object vs. processual orientation, etc. Although John Dewey has been widely acclaimed as a sort of foundational figure for this burgueoning sub-discipline of aesthetics, maybe not enough emphasis has been laid on his very different pragmatist approach. In this regard, his reliance on Hegelian cum Darwinian premises might allow for a connection with other branches of continental as well as Asian philosophies, from which also some research on everyday aesthetics has been made. It is from this wider ontological framework that the notion of rhythm could be vindicated as a pivotal aspect of the aesthetic dimension of our everyday lives. Dewey deals extensively with it in Art as Experience, conceiving it as a sort of pattern of accomplished experiences, accounting also for his naturalistic approach and art and life continuity thesis. On the other hand, neo-pragmatist exponent Richard Shusterman, among others, has posited links of connection between Pragmatist aesthetics and East-Asian philosophies. Particularly, Dewey’s resonances with Asian philosophies have been studied, with a preeminence on the notions of harmony and rhythm. This paper will depart from the analysis of the notion of rhythm in Dewey’s philosophy, trying to hint at some possible developments of its implications. Particularly, it will expand on some East Asian paralelisms to his philosophy, trying to link them with the notion of rhythm as an epitomizing ground for the conjunction of the extraordinary (art) and the ordinary (life).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GHOST TREE SOCIAL tells a coming out story of sorts. In terms of style, many of the poems are short, imagistic lyrics, though some are extended catalogues. Specific natural images—lakes, rivers, and snow—are often contrasted with cultural markers. The imagistic poems are thinking through the work of Sylvia Plath. The catalogue poems shift between diaristic, narrative, and critical modes, responding to the poetry of Elizabeth Bishop and the essays of Edouard Glissant. Voice-driven fragments disrupt the more traditional lyric poems. The fragments fall between formal lyrics like confetti from a gay club’s rafters; or the fragments hold the lyric poems in bondage. The lyric poem then re-signifies as form through resonances with the other discursive and poetic form of the fragment. Following critical writers such as Adrienne Rich and Audre Lorde, the re-signification of lyric form reflects the need for new signs for self and community organized queerly as opposed to more typical binary categories—man or woman, living or dead, rich or poor, white or black—where the first term is privileged and the second term often denigrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light localisation in one-dimensional (1D) randomly disordered medium is usually characterized by randomly distributed resonances with fluctuating transmission values, instead of selectively distributed resonances with close-to-unity transmission values that are needed in real application fields. By a resonance tuning scheme developed recently, opening of favorable resonances or closing of unfavorable resonances are achieved by disorder micro-modification, both on the layered medium and the fibre Bragg grating (FBG) array. And furthermore, it is shown that those disorder-induced resonances are independently tunable. Therefore, selected resonances and arranged light localisation can be achieved via artificial disorder, and thus meet the demand of various application fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jupiter and its moons are a complex dynamical system that include several phenomenon like tides interactions, moon's librations and resonances. One of the most interesting characteristics of the Jovian system is the presence of the Laplace resonance, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1 ratio respectively. It is interesting to study the role of the Laplace Resonance in the dynamic of the system, especially regarding the dissipative nature of the tidal interaction between Jupiter and its closest moon, Io. Numerous theories have been proposed regarding the orbital evolution of the Galilean satellites, but they disagree about the amount of dissipation of the system, therefore about the magnitude and the direction of the evolution of the system, mainly because of the lack of experimental data. The future JUICE space mission is a great opportunity to solve this dispute. JUICE is an ESA (European Space Agency) L-class mission (the largest category of missions in the ESA Cosmic Vision) that, at the beginning of 2030, will be inserted in the Jovian system and that will perform several flybys of the Galilean satellites, with the exception of Io. Subsequently, during the last part of the mission, it will orbit around Ganymede for nine months, with a possible extension of the mission. The data that JUICE will collect during the mission will have an exceptional accuracy, allowing to investigate several aspects of the dynamics the system, especially, the evolution of Laplace Resonance of the Galilean moons and its stability. This thesis will focus on the JUICE mission, in particular in the gravity estimation and orbit reconstruction of the Galilean satellites during the Jovian orbital phase using radiometric data. This is accomplished through an orbit determination technique called multi-arc approach, using the JPL's orbit determination software MONTE (Mission-analysis, Operations and Navigation Tool-kit Environment).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In highly urbanized coastal lowlands, effective site characterization is crucial for assessing seismic risk. It requires a comprehensive stratigraphic analysis of the shallow subsurface, coupled with the precise assessment of the geophysical properties of buried deposits. In this context, late Quaternary paleovalley systems, shallowly buried fluvial incisions formed during the Late Pleistocene sea-level fall and filled during the Holocene sea-level rise, are crucial for understanding seismic amplification due to their soft sediment infill and sharp lithologic contrasts. In this research, we conducted high-resolution stratigraphic analyses of two regions, the Pescara and Manfredonia areas along the Adriatic coastline of Italy, to delineate the geometries and facies architecture of two paleovalley systems. Furthermore, we carried out geophysical investigations to characterize the study areas and perform seismic response analyses. We tested the microtremor-based horizontal-to-vertical spectral ratio as a mapping tool to reconstruct the buried paleovalley geometries. We evaluated the relationship between geological and geophysical data and identified the stratigraphic surfaces responsible for the observed resonances. To perform seismic response analysis of the Pescara paleovalley system, we integrated the stratigraphic framework with microtremor and shear wave velocity measurements. The seismic response analysis highlights strong seismic amplifications in frequency ranges that can interact with a wide variety of building types. Additionally, we explored the applicability of artificial intelligence in performing facies analysis from borehole images. We used a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age to outline a novel, deep-learning-based approach for performing automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. We propose an automated model to rapidly characterize sediment cores, reproducing the sedimentologist's interpretation, and providing guidance for stratigraphic correlation and subsurface reconstructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The internal dynamics of elliptical galaxies in clusters depends on many factors, including the environment in which the galaxy is located. In addition to the strong encounters with the other galaxies, we can also consider the gravitational interaction with the ubiquitous Cluster Tidal Field (CTF). As recognized in many studies, one possible way in which CTF affects the dynamics of galaxies inside the cluster is related to the fact that they may start oscillating as “rigid bodies” around their equilibrium positions in the field, with the periods of these oscillations curiously similar to those of stellar orbits in the outer parts of galaxies. Resonances between the two motions are hence expected and this phenomenon could significantly contribute to the formation of the Intracluster Stellar Population (ISP), whose presence is abundantly confirmed by observations. In this thesis work, we propose to study the motion of an elliptical galaxy, modelled as a rigid body, in the CTF, especially when its center of mass traces a quasi-circular orbit in the cluster gravitational potential. This case extends and generalizes the previous models and findings, proceeding towards a much more realistic description of galaxy motion. In addition to this, the presence of a further oscillation, namely that of the entire galaxy along its orbit, will possibly increase the probability of having resonances and, consequently, the rate of ISP production nearly to observed values. Thus, after reviewing the dynamics of a rigid body in a generic force field, we will assess some physically relevant studies and report their main results, discussing their implications with respect to our problem. We will conclude our discussion focusing on the more realistic scenario of an elliptical galaxy whose center of mass moves on a quasi-circular orbit in a spherically symmetric potential. The derivation of the fundamental equations of motion will serve as the basis for future modelling and discussions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of study of the present work are Bose-Fermi mixtures in three dimensions at zero temperature. The system is characterized by a great tunability of physical parameters that is achieved by means of a Fano-Feshbach resonance. As a result, there are mainly two regimes: we move from a situation in which bosons and fermions are weakly interacting to a context in which bosons are coupled to fermions so as to form molecules that are composite fermions, as the coupling between the two types of particles is increased. In the former case, we can describe the mixture as a weakly attractive Bose-Fermi one, while in the latter the same is described in terms of molecules and excess atoms or particles which are unpaired. The main aim of the thesis is to analyze the spectral weight functions which represent the single-particle excitation spectra of the system and are relevant to recent radio-frequency spectroscopy experiments of the system. In order to pursue this objective, diagrammatic methods are used. The formalism is developed within the T-matrix approach: it consists of an approximate calculation whichselects exclusively the class of Feynman’s diagrams that collects all possible repeated boson-fermion interaction.