999 resultados para FÁRMACOS ANTIARRÍTMICOS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The species of the genus Marsdenia, Apocynaceae, are widely used in folk medicine of several countries. In Brazil is found several species belonging to this genus. The in vitro antioxidant, anticoagulant and antiproliferative activities were evaluated to aqueous extracts of stalk, leaf and root of Marsdenia megalantha. In the total antioxidant capacity assay (expressed as ascorbic acid equivalents) the stalk extract showed 76.0 mg/g, while leaf and root extracts 141.3 mg/g and 57.0 mg/g, respectively. The stalk and leaf extracts showed chelating activity around 40% at 1.5 mg/mL, while root extract, at the same concentration showed, 17%. Only the leaf extract showed a significant ability in superoxide scavenging (80% at 0.8 mg/mL). Any extract was able in scavenge hydroxyl, as well anticoagulant activity. The antiproliferative activity of the extracts was evaluated against HeLa tumor cell line. The extracts inhibited in a dose-dependent manner the cell growth. However, the leaf extract showed 80% of inhibition at 1.0 mg/mL, while stalk and root extracts inhibited 63% and 30%, respectively. To assess the mechanism of cell death caused by the leaf extract in HeLa, was performed flow cytometry and western blot. The results show that leaf extract induces cell death by apoptosis through an activation caspase-independent pathway. These data indicate that stalk and leaf extracts obtained have potential to be used as antioxidants and anticancer drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance of Plasmodium falciparum to the usual antimalarials, as well as their adverse effects and high cost, has led to the search of new drugs against malaria. Several of these have been developed from medicinal plants based on ethnopharmacology, including the most widely used antimalarials today: quinine and artemisinin. In the present study schizonticide activity of extracts and fractions of a number of medicinal plants from the Caatinga and Amazon biomes were assessed based on ethnopharmacological and chemosystematic information. These included Ximenia americana, Maytenus rigida, Sideroxylon obtusifolium, Stryphnodendro coriaceum, Bowdichia virgiliodes, Schinopis brasiliensis and Picrolemma sprucei, the last, an Amazon species. Antimalarial tests of blood schizonticides were conducted in Swiss mice infected with P. berghei and in vitro against P. falciparum. In vitro cytotoxicity studies were carried out using HeLa, CHO, 3T3, Raw and HEPG2 cell lines. Except for X. americana, all species exhibited in vivo or in vitro antimalarial activity, inhibiting parasitic growth by up to 79%. Extracts exhibited moderate toxicity with dosedependent kinetics. In this sense, ethnopharmacological and chemosystematic approaches were shown to be useful and promising tools in the search of new drugs. These findings represent a significant contribution to scientific knowledge of the antimalarial potential of Brazilian flora, thereby opening perspectives for the development of new antimalarials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to develop a suitable magnetic system for administration by the oral route. In addition to that, it was intended to review the current uses of magnetic systems and the safety related to magnetic field exposure. Methods: Coprecipitation and emulsification/crosslinking were carried out in order to synthesize magnetite particles and to coat them, respectively. Results: According to literature review, it was found that magnetic particles present several properties such as magnetophoresis in magnetic field gradient, production of a surrounding magnetic field, and heat generation in alternated magnetic field. When the human organism is exposed to magnetic fields, several interaction mechanisms come into play. However, biological tissues present low magnetic susceptibility. As a result, the effects are not so remarkable. Concerning the development of a magnetic system for oral route, uncoated magnetite particles did undergo significant dissolution at gastric pH. On the other hand, such process was inhibited in the xylan-coated particles. Conclusions: Due to their different properties, magnetic systems have been widely used in biosciences. However, the consequent increased human exposure to magnetic fields has been considered relatively safe. Concerning the experimental work, it was developed a polymer-coated magnetic system. It may be very promising for administration by the oral route for therapy and diagnostic applications as dissolution at gastric pH hardly took place

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Federal do Rio Grande do Norte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of a Cordia salicifolia (porangaba) extract on the labeling of blood cells (BCs) with technetium-99m ((99m)Tc) and on the morphology of red BCs were evaluated. Labeling of cellular and molecular structures with (99m)Tc depends on a reducing agent. Some physical characteristics, as visible absorbance spectrum, electric conductivity, and refractive index of this porangaba extract, were also determined. Blood samples from Wistar rats were incubated with porangaba extract or with 0.9% NaCl (control). Labeling of blood constituents with (99m)Tc was performed. Plasma (P) and BCs, both soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions, were separated. The radioactivity in each fraction was counted, and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, and stained, and the morphology of the red BCs was evaluated. Data showed an absorbance peak at 480 nm and electric conductibility and refractive index concentration-dependent. Porangaba extract decreased significantly (P < .05) the BC, IF-P, and IF-BC %ATI, and no modifications were verified on the shape of red BCs. Analysis of the results reveals that some physical parameters could be useful to aid in characterizing the extract studied. Moreover, it is possible that chemical compounds of this extract could have chelating/redox actions or be capable of binding to plasma and/or cellular proteins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A resistência microbiana a antimicrobianos tem favorecido a busca por substâncias bioativas provenientes de plantas usadas na medicina popular, com o intuito de se obter novos fármacos com atividade antimicrobiana. Neste estudo, foi proposta a investigação da atividade antibacteriana do óleo-resina de Copaifera duckei e de diferentes extratos da casca de Pseudobombax marginatum, e seus possíveis mecanismos de ação. O potencial inibitório antibacteriano foi avaliado utilizando-se os métodos de difusão e diluição em ágar, e a bioautografia. O mecanismo de ação foi analisado por microscopia eletrônica, no qual se observou alterações na ultraestrutura bacteriana, e por eletroforese em SDS-PAGE, que determinou ação sobre as proteínas das superfícies celulares. A análise química foi realizada pelas técnicas de Espectrometria de massas acoplada ao Cromatógrafo a gás- EM/CG (C. duckei) e Cromatografia Líquida de Alta Eficiência- CLAE (P. marginatum). Entre as bactérias estudadas, B. cereus foi a mais suscetível às plantas em estudo, com concentrações inibitórias mínimas (CIMs) correspondentes a 0,3125 mg/mL para o óleo-resina de copaíba, e 0,5 mg/mL para extrato hidroalcoólico (1:1) e 0,512 mg/mL para a fração butanólica da casca P. marginatum, nos quais pôde-se observar alterações na parede celular do B. cereus, com remoção da camada S, espessamento da parede celular e formação de diversos septos nos centros de divisão celular. A análise química por EM/CG mostrou compostos terpênicos no óleo-resina de C. duckei, tendo como composto majoritário o β-bisaboleno, e a análise por CLAE mostrou a presença de compostos derivados da catequina na casca do P. marginatum. Desta forma, as plantas em estudo mostram um potencial antibacteriano considerável, podendo contribuir tanto na terapia antimicrobiana como na área de alimentos, tendo como um de seus prováveis sítios de ação a parede celular bacteriana

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante as últimas décadas, as indústrias farmacêuticas têm despertado grande interesse em óleos vegetais e vários extratos de planta por causa da sua baixa toxicidade e alta biodegrabilidade. O óleo de copaíba (Cop) é usado in natura na medicina popular como anti-inflamatório e antimicrobiano para tratar várias doenças, tais como inflamação da garganta, úlceras e infecções urinárias e pulmonares. Emulsões são sistemas dispersos termodinamicamente instáveis que consistem em dispersões de gotículas microscópicas em outro líquido imiscível. O objetivo deste trabalho foi preparar diferentes emulsões de Cop, determinar o EHL crítico deste óleo e avaliar a sua estabilidade, além de realizar estudos comparativos entre diferentes métodos de construção de diagramas de fases. As emulsões foram preparadas pelo método de inversão de fases variando as proporções de EHL de 4,7 a 16,7. A estabilidade foi determinada por vários métodos e os diagramas de fases foram produzidos pelo método de titulação usando diferentes procedimentos de agitação. As emulsões a base de Cop com EHL entre 12,7 e 15,7 foram as mais estáveis. As emulsões apresentaram boa estabilidade em curto e longo prazo, aspecto leitoso e baixos valores de índice de cremagem. Diferentes sistemas coloidais foram produzidos a partir dos diagramas de fases dependendo do processo de agitação. Baseado nesses métodos, o valor determinado de EHL do Cop foi 14,8, as emulsões permaneceram estáveis por mais de um ano e estes resultados indicam que o estudo das emulsões de Cop pode ser um promissor veículo de liberação tópica de fármacos e ativos cosméticos