987 resultados para Extragalactic Distance Scale
Resumo:
Background : This study aimed to use plantar pressure analysis in relatively long-distance walking for objective outcome evaluation of ankle osteoarthritis treatments, i.e., ankle arthrodesis and total ankle replacement.Methods : Forty-seven subjects in four groups: three patient groups and controls, participated in the study. Each subject walked twice in 50-m trials. Plantar pressure under the pathological foot was measured using pressure insoles. Six parameters: initial contact time, terminal contact time, maximum force time, peak pressure time, maximum force and peak pressure were calculated and averaged over trials in ten regions of foot. The parameters in each region were compared between patient groups and controls and their effect size was estimated. Besides, the correlations between pressure parameters and clinical scales were calculated.Findings : We observed based on temporal parameters that patients postpone the heel-off event, when high force in forefoot and high ankle moment happens. Also based on maximum force and peak pressure, the patients apply smoothened maximum forces on the affected foot. In ten regions, some parameters showed improvements after total ankle replacement, some showed alteration of foot function after ankle arthrodesis and some others showed still abnormality after both surgical treatments. These parameters showed also significant correlation with clinical scales in at least two regions of foot.Interpretation : Plantar pressure parameters in relatively long-distance trials showed to be strong tools for outcome evaluation of ankle osteoarthritis treatments. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.
Resumo:
AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
We describe a novel dissimilarity framework to analyze spatial patterns of species diversity and illustrate it with alien plant invasions in Northern Portugal. We used this framework to test the hypothesis that patterns of alien invasive plant species richness and composition are differently affected by differences in climate, land use and landscape connectivity (i.e. Geographic distance as a proxy and vectorial objects that facilitate dispersal such as roads and rivers) between pairs of localities at the regional scale. We further evaluated possible effects of plant life strategies (Grime's C-S-R) and residence time. Each locality consisted of a 1 km(2) landscape mosaic in which all alien invasive species were recorded by visiting all habitat types. Multi-model inference revealed that dissimilarity in species richness is more influenced by environmental distance (particularly climate), whereas geographic distance (proxies for dispersal limitations) is more important to explain dissimilarity in species composition, with a prevailing role for ecotones and roads. However, only minor differences were found in the responses of the three C-S-R strategies. Some effect of residence time was found, but only for dissimilarity in species richness. Our results also indicated that environmental conditions (e.g. climate conditions) limit the number of alien species invading a given site, but that the presence of dispersal corridors determines the paths of invasion and therefore the pool of species reaching each site. As geographic distances (e.g. ecotones and roads) tend to explain invasion at our regional scale highlights the need to consider the management of alien invasions in the context of integrated landscape planning. Alien species management should include (but not be limited to) the mitigation of dispersal pathways along linear infrastructures. Our results therefore highlight potentially useful applications of the novel multimodel framework to the anticipation and management of plant invasions. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Even 30 years after its first publication the Glasgow Coma Scale (GCS) is still used worldwide to describe and assess coma. The GCS consists of three components, the ocular, motor and verbal response to standardized stimulation, and is used as a severity of illness indicator for coma of various origins. The GCS facilitates information transfer and monitoring changes in coma. In addition, it is used as a triage tool in patients with traumatic brain injury. Its prognostic value regarding the outcome after a traumatic brain injury still lacks evidence. One of the main problems is the evaluation of the GCS in sedated, paralysed and/or intubated patients. A multitude of pseudoscores exists but a universal definition has yet to be defined.
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.
Resumo:
Global human genetic variation is greatly influenced by geography, with genetic differentiation between populations increasing with geographic distance and within-population diversity decreasing with distance from Africa. In fact, these 'clines' can explain most of the variation in human populations. Despite this, population genetics inferences often rely on models that do not take geography into account, which could result in misleading conclusions when working at global geographic scales. Geographically explicit approaches have great potential for the study of human population genetics. Here, we discuss the most promising avenues of research in the context of human settlement history and the detection of genomic elements under natural selection. We also review recent technical advances and address the challenges of integrating geography and genetics.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.