965 resultados para Exact computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Dithen, a novel computation-as-a-service (CaaS) cloud platform specifically tailored to the parallel ex-ecution of large-scale multimedia tasks. Dithen handles the upload/download of both multimedia data and executable items, the assignment of compute units to multimedia workloads, and the reactive control of the available compute units to minimize the cloud infrastructure cost under deadline-abiding execution. Dithen combines three key properties: (i) the reactive assignment of individual multimedia tasks to available computing units according to availability and predetermined time-to-completion constraints; (ii) optimal resource estimation based on Kalman-filter estimates; (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of units servicing workloads. The deployment of Dithen over Amazon EC2 spot instances is shown to be capable of processing more than 80,000 video transcoding, face detection and image processing tasks (equivalent to the processing of more than 116 GB of compressed data) for less than $1 in billing cost from EC2. Moreover, the proposed AIMD-based control mechanism, in conjunction with the Kalman estimates, is shown to provide for more than 27% reduction in EC2 spot instance cost against methods based on reactive resource estimation. Finally, Dithen is shown to offer a 38% to 500% reduction of the billing cost against the current state-of-the-art in CaaS platforms on Amazon EC2 (Amazon Lambda and Amazon Autoscale). A baseline version of Dithen is currently available at dithen.com.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computers employing some degree of data flow organisation are now well established as providing a possible vehicle for concurrent computation. Although data-driven computation frees the architecture from the constraints of the single program counter, processor and global memory, inherent in the classic von Neumann computer, there can still be problems with the unconstrained generation of fresh result tokens if a pure data flow approach is adopted. The advantages of allowing serial processing for those parts of a program which are inherently serial, and of permitting a demand-driven, as well as data-driven, mode of operation are identified and described. The MUSE machine described here is a structured architecture supporting both serial and parallel processing which allows the abstract structure of a program to be mapped onto the machine in a logical way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation mainly focuses on coordinated pricing and inventory management problems, where the related background is provided in Chapter 1. Several periodic-review models are then discussed in Chapters 2,3,4 and 5, respectively. Chapter 2 analyzes a deterministic single-product model, where a price adjustment cost incurs if the current selling price is changed from the previous period. We develop exact algorithms for the problem under different conditions and find out that computation complexity varies significantly associated with the cost structure. %Moreover, our numerical study indicates that dynamic pricing strategies may outperform static pricing strategies even when price adjustment cost accounts for a significant portion of the total profit. Chapter 3 develops a single-product model in which demand of a period depends not only on the current selling price but also on past prices through the so-called reference price. Strongly polynomial time algorithms are designed for the case without no fixed ordering cost, and a heuristic is proposed for the general case together with an error bound estimation. Moreover, our illustrates through numerical studies that incorporating reference price effect into coordinated pricing and inventory models can have a significant impact on firms' profits. Chapter 4 discusses the stochastic version of the model in Chapter 3 when customers are loss averse. It extends the associated results developed in literature and proves that the reference price dependent base-stock policy is proved to be optimal under a certain conditions. Instead of dealing with specific problems, Chapter 5 establishes the preservation of supermodularity in a class of optimization problems. This property and its extensions include several existing results in the literature as special cases, and provide powerful tools as we illustrate their applications to several operations problems: the stochastic two-product model with cross-price effects, the two-stage inventory control model, and the self-financing model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we construct a model for the simultaneous compaction by which clusters are restructured, and growth of clusters by pairwise coagulation. The model has the form of a multicomponent aggregation problem in which the components are cluster mass and cluster diameter. Following suitable approximations, exact explicit solutions are derived which may be useful for the verification of simulations of such systems. Numerical simulations are presented to illustrate typical behaviour and to show the accuracy of approximations made in deriving the model. The solutions are then simplified using asymptotic techniques to show the relevant timescales of the kinetic processes and elucidate the shape of the cluster distribution functions at large times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintaining privacy guarantees in real-world applications. However, current secure computation protocols are not yet efficient enough to be used in practice. We argue that this is due to much of the research effort being focused on generality rather than specificity. Namely, current research tends to focus on constructing and improving protocols for the strongest notions of security or for an arbitrary number of parties. However, in real-world deployments, these security notions are often too strong, or the number of parties running a protocol would be smaller. In this thesis we make several steps towards bridging the efficiency gap of secure computation by focusing on constructing efficient protocols for specific real-world settings and security models. In particular, we make the following four contributions: - We show an efficient (when amortized over multiple runs) maliciously secure two-party secure computation (2PC) protocol in the multiple-execution setting, where the same function is computed multiple times by the same pair of parties. - We improve the efficiency of 2PC protocols in the publicly verifiable covert security model, where a party can cheat with some probability but if it gets caught then the honest party obtains a certificate proving that the given party cheated. - We show how to optimize existing 2PC protocols when the function to be computed includes predicate checks on its inputs. - We demonstrate an efficient maliciously secure protocol in the three-party setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The only method used to date to measure dissolved nitrate concentration (NITRATE) with sensors mounted on profiling floats is based on the absorption of light at ultraviolet wavelengths by nitrate ion (Johnson and Coletti, 2002; Johnson et al., 2010; 2013; D’Ortenzio et al., 2012). Nitrate has a modest UV absorption band with a peak near 210 nm, which overlaps with the stronger absorption band of bromide, which has a peak near 200 nm. In addition, there is a much weaker absorption due to dissolved organic matter and light scattering by particles (Ogura and Hanya, 1966). The UV spectrum thus consists of three components, bromide, nitrate and a background due to organics and particles. The background also includes thermal effects on the instrument and slow drift. All of these latter effects (organics, particles, thermal effects and drift) tend to be smooth spectra that combine to form an absorption spectrum that is linear in wavelength over relatively short wavelength spans. If the light absorption spectrum is measured in the wavelength range around 217 to 240 nm (the exact range is a bit of a decision by the operator), then the nitrate concentration can be determined. Two different instruments based on the same optical principles are in use for this purpose. The In Situ Ultraviolet Spectrophotometer (ISUS) built at MBARI or at Satlantic has been mounted inside the pressure hull of a Teledyne/Webb Research APEX and NKE Provor profiling floats and the optics penetrate through the upper end cap into the water. The Satlantic Submersible Ultraviolet Nitrate Analyzer (SUNA) is placed on the outside of APEX, Provor, and Navis profiling floats in its own pressure housing and is connected to the float through an underwater cable that provides power and communications. Power, communications between the float controller and the sensor, and data processing requirements are essentially the same for both ISUS and SUNA. There are several possible algorithms that can be used for the deconvolution of nitrate concentration from the observed UV absorption spectrum (Johnson and Coletti, 2002; Arai et al., 2008; Sakamoto et al., 2009; Zielinski et al., 2011). In addition, the default algorithm that is available in Satlantic sensors is a proprietary approach, but this is not generally used on profiling floats. There are some tradeoffs in every approach. To date almost all nitrate sensors on profiling floats have used the Temperature Compensated Salinity Subtracted (TCSS) algorithm developed by Sakamoto et al. (2009), and this document focuses on that method. It is likely that there will be further algorithm development and it is necessary that the data systems clearly identify the algorithm that is used. It is also desirable that the data system allow for recalculation of prior data sets using new algorithms. To accomplish this, the float must report not just the computed nitrate, but the observed light intensity. Then, the rule to obtain only one NITRATE parameter is, if the spectrum is present then, the NITRATE should be recalculated from the spectrum while the computation of nitrate concentration can also generate useful diagnostics of data quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equivalence of the noncommutative U(N) quantum field theories related by the θ-exact Seiberg-Witten maps is, in this paper, proven to all orders in the perturbation theory with respect to the coupling constant. We show that this holds for super Yang-Mills theories with N=0, 1, 2, 4 supersymmetry. A direct check of this equivalence relation is performed by computing the one-loop quantum corrections to the quadratic part of the effective action in the noncommutative U(1) gauge theory with N=0, 1, 2, 4 supersymmetry.