922 resultados para Engineering Asset Management, Optimisation, Preventive Maintenance, Reliability Based Preventive Maintenance, Multiple Criteria Decision Making


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preventive maintenance actions over the warranty period have an impact on the warranty servicing cost to the manufacturer and the cost to the buyer of fixing failures over the life of the product after the warranty expires. However, preventive maintenance costs money and is worthwhile only when these costs exceed the reduction in other costs. The paper deals with a model to determine when preventive maintenance actions (which rejuvenate the unit) carried out at discrete time instants over the warranty period are worthwhile. The cost of preventive maintenance is borne by the buyer. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For leased equipment, the lessor carries out the maintenance of the equipment. Usually, the contract of lease specifies the penalty for equipment failures and for repairs not being carried out within specified time limits. This implies that optimal preventive maintenance policies must take these penalty costs into account and properly traded against the cost of preventive maintenance actions. The costs associated with failures are high as unplanned corrective maintenance actions are costly and the resulting penalties due to lease contract terms being violated. The paper develops a model to determine the optimal parameters of a preventive maintenance policy that takes into account all these costs to minimize the total expected cost to the lessor for new item lease. The parameters of the policy are (i) the number of preventive maintenance actions to be carried out over the lease period, (ii) the time instants for such actions, and (iii) the level of action. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High reliability of railway power systems is one of the essential criteria to ensure quality and cost-effectiveness of railway services. Evaluation of reliability at system level is essential for not only scheduling maintenance activities, but also identifying reliability-critical components. Various methods to compute reliability on individual components or regularly structured systems have been developed and proven to be effective. However, they are not adequate for evaluating complicated systems with numerous interconnected components, such as railway power systems, and locating the reliability critical components. Fault tree analysis (FTA) integrates the reliability of individual components into the overall system reliability through quantitative evaluation and identifies the critical components by minimum cut sets and sensitivity analysis. The paper presents the reliability evaluation of railway power systems by FTA and investigates the impact of maintenance activities on overall reliability. The applicability of the proposed methods is illustrated by case studies in AC railways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Maintenance management is a core process in infrastructure asset management. Infrastructure organisations must constantly strive to ensure the effectiveness of this process in order to obtain the greatest lifetime value from their infrastructure assets. This paper aims to investigate how infrastructure organisations can enhance the effectiveness of their maintenance management process. Approach This study utilised multiple case studies as the research approach. The case organisations were asked to identify the challenges faced in the maintenance process and the approaches they have adopted to overcome these challenges. Analysis of these findings, together with deductive reasoning, leads to the development of the proposed capability needed for effective maintenance management process. Findings The case studies reveal that maintenance management process is a core process in ensuring that infrastructure assets are optimally and functionally available to support business operations. However, the main challenge is the lack of skilled and experienced personnel to understand and anticipate maintenance requirement. A second challenge is the reduced window of time available to carry out inspection and maintenance works. To overcome these challenges, the case organisations have invested in technologies. However, technologies available to facilitate this process are complex and constantly changing. Consequently, there is a need for infrastructure organizations to develop their technological absorptive capability, i.e. the ability to embrace and capitalize on new technologies to enhance their maintenance management process. Originality/Value This paper is original in that it provides empirical evidence to identify technological absorptive capability as core to improving the maintenance management process. The findings are valuable because it sheds light on where infrastructure organisation, regardless of whether they are privately or publicly owned, should channel their scarce resources. The development of the core capability will ensure that the maintenance process can contribute value to their organisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E&P sector can learn much about asset maintenance from the space and satellite industry. Practitioners from both the upstream oil and gas industry and the space and satellite sector have repeatedly noted several striking similarities between the two industries over the years, which have in turn resulted in many direct comparisons in the media and industry press. The similarities between the two industries have even resulted in a modest amount of cross-pollinating between the respective supply chains. Because the operating conditions of both industries are so extreme, some oil and gas equipment vendors have occasionally sourced motors and other parts from aerospace contractors. Also, satellites are now being used to assess oil fires, detect subsidence in oil fields, measure oil spills, collect and transmit operational data from oil and gas fields, and monitor the movement of icebergs that might potentially collide with offshore oil and gas installations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a methodology to reduce composite structure maintenance operational cost using SHM systems is adressed. Based on SHM real-time data, in-service structure lifetime prognostic and remaining useful lifetime (RUL) can be performed. Maintenance timetable can be therefore predicted by optimizing inspection times. A probabilistic ap-proach is combined with phenomenological fatigue damage models for composite mate-rials to perform maintenance cost-effectiveness of composite structure. A Monte Carlo method is used to estimate the probability of failure of composite structures and com-pute the average number of composite structure components to be replaced over the component lifetime. The replacement frequency of a given structure component over the aircraft lifetime is assessed. A first application of aeronautical composite structure maintenance is considered. Two composite models to predict the fatigue life and several laminates have been used. Our study shows that maintenance cost-effectiveness depends on material and fatigue loading applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Managing software maintenance is rarely a precise task due to uncertainties concerned with resources and services descriptions. Even when a well-established maintenance process is followed, the risk of delaying tasks remains if the new services are not precisely described or when resources change during process execution. Also, the delay of a task at an early process stage may represent a different delay at the end of the process, depending on complexity or services reliability requirements. This paper presents a knowledge-based representation (Bayesian Networks) for maintenance project delays based on specialists experience and a corresponding tool to help in managing software maintenance projects. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"August 2000."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.