950 resultados para Energy-dispersive X-ray spectroscopy (EDS)
Resumo:
OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.
Resumo:
This paper presents a system for 3-D reconstruction of a patient-specific surface model from calibrated X-ray images. Our system requires two X-ray images of a patient with one acquired from the anterior-posterior direction and the other from the axial direction. A custom-designed cage is utilized in our system to calibrate both images. Starting from bone contours that are interactively identified from the X-ray images, our system constructs a patient-specific surface model of the proximal femur based on a statistical model based 2D/3D reconstruction algorithm. In this paper, we present the design and validation of the system with 25 bones. An average reconstruction error of 0.95 mm was observed.
Resumo:
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Refractive losses in laser-produced plasmas used as gain media are caused by electron density gradients, and limit the energy transport range. The pump pulse is thus deflected from the high-gain region and the short wavelength laser signal also steers away, causing loss of collimation. A Hohlraum used as a target makes the plasma homogeneous and can mitigate refractive losses by means of wave-guiding. A computational study combining a hydrodynamics code and an atomic physics code is presented, which includes a ray-tracing modeling based on the eikonal theory of the trajectory equation. This study presents gain calculations based on population inversion produced by free-electron collisions exciting bound electrons into metastable levels in the 3d94d1(J = 0) → 3d94p1(J = 1) transition of Ni-like Sn. Further, the Hohlraum suggests a dramatic enhancement of the conversion efficiency of collisionally excited x-ray lasing for Ni-like Sn.
Resumo:
Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.
Resumo:
The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.