891 resultados para Effect on human
Resumo:
The atmosphere's fair weather electric field is a permanent feature, arising from the combination of distant thunderstorms, Earth's conducting surface, a charged ionosphere and cosmic ray ionization. Despite its ubiquity, no fair weather electricity effect on clouds has been hitherto demonstrated. Here we report surface measurements of radiation emitted and scattered by extensive thin continental cloud, which, after ~2 min delay, shows changes closely following the fair weather electric field. For typical fluctuations in the fair weather electric field, changes of about 10% are subsequently induced in the diffuse short-wave radiation. These observations are consistent with enhanced production of large cloud droplets from charging at layer cloud edges.
Resumo:
Adsorption of arsenic onto soil was investigated as a means of understanding arsenic-induced release of phosphate. In batch adsorption experiments As adsorption was accompanied by P desorption. At low As additions, the ratio As adsorbed: P desorbed remained constant. At higher As additions, P desorption reached a maximum while As adsorption continued to increase. The P desorption maximum coincided with an increase in pH. Barley plants were grown on soils spiked with arsenate (0-360 mg As kg(-1)) to investigate the effect on plant growth and P uptake. As arsenic concentration increased, above ground plant yield decreased and the plants showed symptoms typical of As toxicity and P deficiency. At low As additions to the soil, uptake of As and P by barley increased. At higher As additions P uptake decreased. It is argued that this was due to the change in As:P ratio in the soil solution. It is concluded that input of arsenic to the soil could mobilise phosphate. Crop yield is likely to be affected, either due to reduced phosphate availability at low arsenic additions or arsenic toxicity at higher additions.
Resumo:
The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 × 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.
Resumo:
Most empirical and numerical models of Interplanetary Coronal Mass Ejection (ICME) propagation use the initial CME velocity as their primary, if not only, observational input. These models generally predict a wide spread of 1 AU transit times for ICMEs with the same initial velocity. We use a 3D coupled MHD model of the corona and heliosphere to determine the ambient solar wind's effect on the propagation of ICMEs from 30 solar radii to 1 AU. We quantitatively characterize this deceleration by the velocity of the upstream ambient solar wind. The effects of varying solar wind parameters on the ICME transit time are quantified and can explain the observed spread in transit times for ICMEs of the same initial velocity. We develop an adjustment formula that can be used in conjunction with other models to reduce the spread in predicted transit times of Earth-directed ICMEs.
Resumo:
The excess surface energy of lamellae formed by an ABA triblock copolymer melt oriented parallel to a neutral surface is evaluated using self-consistent field theory (SCFT). Consistent with experiments and previous SCFT calculations, we find a preference for the A-rich domains at the surface, which can only be attributed to the architectural asymmetry between the A and B blocks. The behavior was previously attributed to a loss of bridging configurations that occurs when the B-domain resides at the surface. Here we demonstrate that it is actually the presence of chain ends that reduces the excess surface energy of an A-rich domain relative that of a B-rich domain.
Resumo:
Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.