827 resultados para Echinacea (Plants) Therapeutic use
Resumo:
Ethnopharmacological relevance: The species Qualea grandiflora and Qualea multiflora, which belong to the Vochysiaceae family, are common in the Brazilian savannah (Cerrado biome), and the local inhabitants use these species to treat external ulcers and gastric diseases and as an anti-inflammatory agent. Studies have demonstrated that these plants contain compounds that exhibit pharmacological activities; however, the risks associated with their consumption are not known.Material and methods: In the present study, the mutagenicity of polar and apolar extracts from Qualea grandiflora and Qualea multiflora were assessed by employing the Ames assay with and without metabolic activation. Additionally, phytochemical analyses (HPLC-ESI-IT-MS, HPLC-UV-PDA and GC-IT-MS) were performed to identify the chemical constituents present in these species, including the evaluation of physico-chemical properties, such as polarity or apolarity of the organic compounds, which are related to each fraction obtained. These studies provide important information regarding the biochemical behaviour of these compounds.Results: All extracts exhibited mutagenicity, inducing frameshift mutations and base substitutions in DNA. Phytochemical analysis identified terpenes, ellagic acid derivatives and phytosteroids.Conclusions: The mutagenicity observed might be due to the presence of pentacyclic triterpenes and polyphenols, which are able to generate reactive oxygen species (ROS) and result in the potential to cause DNA damage. The genetic risk identified in this present work shows that special attention should be considered for the use of compounds obtained from these plant species in medicinal treatments. Further studies must be conducted to identify safe therapeutic doses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study is aimed to diagnose the current public programs focused on herbal medicine in Brazil where the following results can be observed. The main purpose of implementation of these programs was the demand of the users of medicinal plants and herbal medicines. The initiative of the implementation of these programs was related to the managers (58%). The difficulties in this implementation were due to lack of funding (90%) of the programs. In 80% of the programs, the physicians did not adhere to herbal medicine services due to lack of knowledge in the subject. Training courses were proposed (70%) to increase the adhesion of prescribers to the system. Some municipalities use information obtained from patients to assess the therapeutic efficiency of medicinal plants and herbal medicines. of the programs underway, cultivation of medicinal plants was observed in 50%, and 67% of the programs adopted quality control. In most programs, this control is not performed in accordance with the legal requirements.
Resumo:
The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
There has been much discussion on the importance of Brazilian ethanol in promoting a more sustainable society. However, there is a lack of analysis of whether sugarcane plants/factories that produce this ethanol are environmentally suitable. Thus, the objective of this study was to analyse stages of environmental management at four Brazilian ethanol-producing plants, examining the management practices adopted and the factors behind this adoption. The results indicate that (1) only one of the four plants is in the environmentally proactive stage; (2) all plants are adopting operational and organisational environmental management practices; (3) all plants have problems in communicating environmental management practices; and (4) the plant with the most advanced environmental management makes intense use of communication practices and is strongly oriented towards a more environmentally aware international market. This paper is an attempt to explain the complex relationship between the evolution of environmental management, environmental practices and motivation using a framework. The implications for society, plant directors and scholars are described, as well as the study's limitations.
Resumo:
This work evaluates the environmental impact resulting from the natural gas and diesel combustion in thermoelectric power plants that utilize the combined cycle technology (CC), as regarding to Brazilian conditions according to Thermopower Priority Plan JPP). In the regions where there are not natural gas the option has been the utilization of diesel and consequentily there are more emission of pollutants. The ecological efficiency concept, which evaluates by and large the environmental impact, caused by CO2, SO2, NOx and particulate matter (PM) emissions. The combustion gases of the thermoelectric power plants working with natural gas (less pollutant) and diesel (more pollutant) cause problems to the environment, for their components harm the human being life, animals and directly the plants. The resulting pollution from natural gas and diesel combustion is analyzed, considering separately the CO2, SO2, NO2 and particulate matter gas emission and comparing them with the in use international standards regarding the air quality. It can be concluded that it is possible to calculate thermoelectric power plant quantitative and qualitative environment factor, and on the ecological standpoint, for plant with total power of 41441 kW, being 27 170 kW for the gas turbine and 14271 kW for the steam turbine. The natural gas used as fuel is better than the diesel, presenting ecological efficiency of 0.944 versus 0.914 for the latter, considering a thermal efficiency of 54% for the combined cycle. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The identification of patterns of inappropriate antimicrobial prescriptions in hospitals contributes to the improvement of antimicrobial stewardship programs (ASP). Methods: We conducted a cross-sectional study to identify predictors of inappropriateness in requests for parenteral antimicrobials (RPAs) in a teaching hospital with 285 beds. We reviewed 25% of RPAs for therapeutic purposes from y 2005. Appropriateness was evaluated according to current guidelines for antimicrobial therapy. We assessed predictors of inappropriateness through univariate and multivariate models. RPAs classified as 'appropriate' or 'probably appropriate' were selected as controls. Case groups comprised inappropriate RPAs, either in general or for specific errors. Results: Nine hundred and sixty-three RPAs were evaluated, 34.6% of which were considered inappropriate. In the multivariate analysis, general predictors of inappropriateness were: prescription on week-ends/holidays (odds ratio (OR) 1.67, 95% confidence interval (CI) 1.20-2.28, p = 0.002), patient in the intensive care unit (OR 1.57, 95% CI 1.11-2.23, p = 0.01), peritoneal infection (OR 2.15, 95% CI 1.27-3.65, p = 0.004), urinary tract infection (OR 1.89, 95% CI 1.25 -2.87, p = 0.01), combination therapy with 2 or more antimicrobials (OR 1.72, 95% CI 1.15-2.57, p = 0.008) and prescriptions including penicillins (OR 2.12, 95% CI 1.39-3.25, p = 0.001) or 1(st) generation cephalosporins (OR 1.74, 95% CI 1.01-3.00, p = 0.048). Previous consultation with an infectious diseases (ID) specialist had a protective effect against inappropriate prescription (OR 0.34, 95% CI 0.24-0.50, p < 0.001). Factors independently associated with specific prescription errors varied. However, consultation with an ID specialist was protective against both unnecessary antimicrobial use (OR 0.04, 95% CI 0.01-0.26, p = 0.001) and requests for agents with an insufficient antimicrobial spectrum (OR 0.14, 95% CI 0.03-0.30, p = 0.01). Conclusions: Our results demonstrate the importance of previous consultation with an ID specialist in assuring the quality of prescriptions. Also, they highlight prescription patterns that should be approached by ASP policies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This review aimed to show the use of gibberellin in floriculture. In this context, it should be noted that the benefit of the activity of the gibberellins has brought major advances in the field of physiology. Its use is one of the most important tools for the development of agriculture. Thus, the study concluded that the use of gibberellins has been increasingly used by producers and is also a vast important subject that may help in increasing the production of flowers if the farms are dedicated to this purpose.