948 resultados para ENTROPY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T-m = 50.2 +/- 0.2 degrees C and a folding enthalpy Delta H degrees(fold) = -49.0 +/- 2.1 kcal mol(-1). These values agree with values of T-m = 49.6 degrees C and Delta H degrees(fold) = -51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy Delta G degrees(bind) = -5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with Delta H degrees(bind) = -8.7 kcal mol(-1). Combination of enthalpy and free energy produce ail unfavorable entropy of -T Delta S degrees = +3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K-1 was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene oxide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that Sanchez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanometre-sized poly(vinylidene fluoride) (PVDF) particle domains in a confined space were obtained by blending PVDF with excess poly(methyl methacrylate) (PMMA). When these particles were small enough they showed beta -form structure, which was different from the structure of bigger particles or PVDF bulk. However, the beta -form was thermodynamically metastable because it could eventually be transformed to a more stable phase by annealing at a certain temperature. Larger particle domains were of identical phase to the bulk, indicating that small size favours the formation of the beta -form. (C) 2000 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer blends of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN) with an acrylonitrile content of about 30 wt % were prepared by means of solution-casting and characterized by virtue of pressure-volume-temperature (PVT) dilatometry. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of the mixing, the volume change of the mixing, and the combinatorial and vacancy entropies of the mixing for the PMMA/SAN system. A new volume-combining rule was used to evaluate the close-packed volume per mer, upsilon*, of the PMMA/SAN blends. The calculated results showed that the new and the original volume-combining rules had a slight influence on the FH interaction parameter, the enthalpy of the mixing, and the combinatorial entropy of the mixing. Moreover, the spinodals and the binodals calculated with the SL theory by means of the new volume-combining rule could coincide with the measured data for the PMMA/SAN system with a lower critical solution temperature, whereas those obtained by means of the original one could not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single chain and pauci chain single crystals of gutta percha in nanometer size were prepared by a dilute solution spraying method. A new crystal modification of gutta percha was found. The unit cell of the new modification of gutta percha was determined by electron diffraction crystal structure analysis to be a hexagonal form with cell dimensions: a = b = 0.695 nm, c = 0.661 nm, alpha = beta = 90 degrees, gamma =120 degrees; the space group is P6. The molecular packing in the unit cell was determined by computer modelling with Cerius(2) 2.0 software. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new series of liquid crystals of bis[4-(p-phenoxy)-phenylbenozoate] alkyldicarboxylate which contain two rigid groups connected by a flexible spacer was synthesized. These liquid crystals show nematic phase and were found to show odd-even effect in isotropization temperature and entropy change.