819 resultados para E-Learning Systems
Resumo:
Resilience is widely accepted as a desirable system property for cyber-physical systems. However, there are no metrics that can be used to measure the resilience of cyber-physical systems (CPS) while the multi-dimensional nature of performance in these systems is considered. In this work, we present first results towards a resilience metric framework. The key contributions of this framework are threefold: First, it allows to evaluate resilience with respect to different performance indicators that are of interest. Second, complexities that are relevant to the performance indicators of interest, can be intentionally abstracted. Third and final, it supports the identification of reasons for good or bad resilience to improve system design.
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.
Resumo:
Educational systems worldwide are facing an enormous shift as a result of sociocultural, political, economic, and technological changes. The technologies and practices that have developed over the last decade have been heralded as opportunities to transform both online and traditional education systems. While proponents of these new ideas often postulate that they have the potential to address the educational problems facing both students and institutions and that they could provide an opportunity to rethink the ways that education is organized and enacted, there is little evidence of emerging technologies and practices in use in online education. Because researchers and practitioners interested in these possibilities often reside in various disciplines and academic departments the sharing and dissemination of their work across often rigid boundaries is a formidable task. Contributors to Emergence and Innovation in Digital Learning include individuals who are shaping the future of online learning with their innovative applications and investigations on the impact of issues such as openness, analytics, MOOCs, and social media. Building on work first published in Emerging Technologies in Distance Education, the contributors to this collection harness the dispersed knowledge in online education to provide a one-stop locale for work on emergent approaches in the field. Their conclusions will influence the adoption and success of these approaches to education and will enable researchers and practitioners to conceptualize, critique, and enhance their understanding of the foundations and applications of new technologies.
Resumo:
[EN]Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
There is increasing advocacy for inclusive community-based approaches to environmental management, and growing evidence that involving communities improves the sustainability of social-ecological systems. Most community-based approaches rely on partnerships and knowledge exchange between communities, civil society organizations, and professionals such as practitioners and/or scientists. However, few models have actively integrated more horizontal knowledge exchange from community to community. We reflect on the transferability of community owned solutions between indigenous communities by exploring challenges and achievements of community peer-to-peer knowledge exchange as a way of empowering communities to face up to local environmental and social challenges. Using participatory visual methods, indigenous communities of the North Rupununi (Guyana) identified and documented their community owned solutions through films and photostories. Indigenous researchers from this community then shared their solutions with six other communities that faced similar challenges within Guyana, Suriname, Venezuela, Colombia, French Guiana, and Brazil. They were supported by in-country civil society organizations and academics. We analyzed the impact of the knowledge exchange through interviews, field reports, and observations. Our results show that indigenous community members were significantly more receptive to solutions emerging from, and communicated by, other indigenous peoples, and that this approach was a significant motivating force for galvanizing communities to make changes in their community. We identified a range of enabling factors, such as building capacity for a shared conceptual and technical understanding, that strengthens the exchange between communities and contributes to a lasting impact. With national and international policy-makers mobilizing significant financial resources for biodiversity conservation and climate change mitigation, we argue that the promotion of community owned solutions through community peer-to-peer exchange may deliver more long-lasting, socially and ecologically integrated, and investment-effective strategies compared to top-down, expert led, and/or foreign-led initiatives.
Resumo:
We evaluate whether society can adequately be conceptualized as a component of social-ecological systems, given social theory and the current outputs of systems-based research. A mounting critique from the social sciences posits that resilience theory has undertheorized social entities with the concept of social-ecological systems. We trace the way that use of the term has evolved, relating to social science theory. Scientometic and network analysis provide a wide range of empirical data about the origin, growth, and use of this term in academic literature. A content analysis of papers in Ecology and Society demonstrates a marked emphasis in research on institutions, economic incentives, land use, population, social networks, and social learning. These findings are supported by a review of systems science in 18 coastal assessments. This reveals that a systems-based conceptualization tends to limit the kinds of social science research favoring quantitative couplings of social and ecological components and downplaying interpretive traditions of social research. However, the concept of social-ecological systems remains relevant because of the central insights concerning the dynamic coupling between humans and the environment, and its salient critique about the need for multidisciplinary approaches to solve real world problems, drawing on heuristic devices. The findings of this study should lead to more circumspection about whether a systems approach warrants such claims to comprehensiveness. Further methodological advances are required for interdisciplinarity. Yet there is evidence that systems approaches remain highly productive and useful for considering certain social components such as land use and hybrid ecological networks. We clarify advantages and restrictions of utilizing such a concept, and propose a reformulation that supports engagement with wider traditions of research in the social sciences.
Resumo:
The distance learning program "School Management" supports decision makers at the school and ministerial levels in the shaping of formal and informal learning processes at different levels in schools and curricula in Eritrea. This paper examines how the distance learning program is interconnected to educational system development. (DIPF/Orig.)
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
This thesis focused on medical students’ language learning strategies for patient encounters. The research questions concerned the types of learning strategies that medical students use and the differences between the preclinical students and the clinical students, two groups who have had varying amounts of experience with patients. Additionally, strategy use was examined through activity systems to gain information on the context of language learning strategy use in order to learn language for patient encounters. In total, 130 first-year medical students (preclinical) and 39 fifth-year medical students (clinical) participated in the study by filling in a questionnaire on language learning strategies. In addition, two students were interviewed in order to create activity systems for the medical students at different stages of their studies. The study utilised both quantitative and qualitative research methods; the analysis of the results relies on Oxford’s Strategic Self-Regulation Model in the quantitative part and on activity theory in the qualitative part. The theoretical sections of the study introduced earlier research and theories regarding English for specific purposes, language learning strategies and activity theory. The results indicated that the medical students use affective, sociocultural-interactive and metasociocultural-interactive strategies often and avoid using negative strategies, which hinder language learning or cease communication altogether. Slight differences between the preclinical and clinical students were found, as clinical students appear to use affective and metasociocultural-interactive strategies more frequently compared to the preclinical students. The activity systems of the two students interviewed were rather similar. The students were at different stages of their studies, but their opinions were very similar. Both reported the object of learning to be mutual understanding between the patient and the doctor, which in part explains the preference for strategies that support communication and interaction. The results indicate that the nature of patient encounters affects the strategy use of the medical students at least to some extent.
Resumo:
Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.