987 resultados para Dynamical evolution
Resumo:
The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.
Resumo:
Structure and dynamical processes of vortex dislocations in a kind of wake-type flow are described clearly by vortex lines, which are directly constructed from data of three-dimensional direct numerical simulations of the flow evolution.
Resumo:
A high order difference scheme is used to simulate the spatially developing compressible axisymmetric jet. The results show that the Kelvin-Helmholtz instability appears first when the jet loses its stability, and then with development of jet the increase in nonlinear effects leads to the secondary instability and the formation of the streamwise vortices. The evolution of the three-dimensional coherent structure is presented. The computed results verify that in axisymmetric jet the secondary instability and formation of the streamwise vortices are the important physical mechanism of enhancing the flow mixing and transition occurring.
Resumo:
By sample specificity it is meant that specimens with the same nominal material parameters and tested under the same environmental conditions may exhibit different behavior with diversified strength. Such an effect has been widely observed in the testing of material failure and is usually attributed to the heterogeneity of material at the mesoscopic level. The degree with which mesoscopic heterogeneity affects macroscopic failure is still not clear. Recently, the problem has been examined by making use of statistical ensemble evolution of dynamical system and the mesoscopic stress re-distribution model (SRD). Sample specificity was observed for non-global mean stress field models, such as the duster mean field model, stress concentration at tip of microdamage, etc. Certain heterogeneity of microdamage could be sensitive to particular SRD leading to domino type of coalescence. Such an effect could start from the microdamage heterogeneity and then be magnified to other scale levels. This trans-scale sensitivity is the origin of sample specificity. The sample specificity leads to a failure probability Phi (N) with a transitional region 0 <
Resumo:
对LY12铝合金在低周疲劳条件下的裂纹情况和随后进行的动态拉伸条件下裂纹的发展给予了观察和统计分析。发现裂纹的累积数密度分布在损伤演化过程中保持指数形式,用NAG模型对实验结果进行分析,得出该材料裂纹演化发展方程的各种参数。
Resumo:
Development of shear bands in saturated soils is a multi-stage process based on the theoretical and numerical investigations in this paper. The soil is initially in homogenous shear strain state, and the instability can be characterized by a dimensionless number D. The inhomogenous distribution of shear strains appears when D>1, and the shear band will initiate and develop gradually. Numerical solutions show that only single shear band that is finally formed in the central region of the specimen even several disturbances (distributed along the specimen) appear in the beginning.
Resumo:
Damage evolution of heterogeneous brittle media involves a wide range of length scales. The coupling between these length scales underlies the mechanism of damage evolution and rupture. However, few of previous numerical algorithms consider the effects of the trans-scale coupling effectively. In this paper, an adaptive mesh refinement FEM algorithm is developed to simulate this trans-scale coupling. The adaptive serendipity element is implemented in this algorithm, and several special discontinuous base functions are created to avoid the incompatible displacement between the elements. Both the benchmark and a typical numerical example under quasi-static loading are given to justify the effectiveness of this model. The numerical results reproduce a series of characteristics of damage and rupture in heterogeneous brittle media.
Resumo:
Low-dimensional systems are constructed to investigate dynamics of vortex dislocations in a wake-type shear flow. High-resolution direct numerical simulations are employed to obtain flow snapshots from which the most energetic modes are extracted using proper orthogonal decomposition (POD). The first 10 modes are classified into two groups. One represents the general characteristics of two-dimensional wake-type shear flow, and the other is related to the three-dimensional properties or non-uniform characteristics along the span. Vortex dislocations are generated by these two kinds of coherent structures. The results from the first 20 three-dimensional POD modes show that the low- dimensional systems have captured the basic properties of the wake-type shear flow with vortex dislocation, such as two incommensurable frequencies and their beat frequency.
Resumo:
The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.
Resumo:
This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.