988 resultados para Dynamic Loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Young’s Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An early experiment found that a square rubber sheet under symmetric biaxial loading may not remain square. This curious result has been one of the most instructive examples in finite elasticity. Here thermodynamic considerations are used to analyze this instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A frequency-domain method for nonlinear analysis of structural systems with viscous, hysteretic, nonproportional and frequency-dependent damping is presented. The nonlinear effects and nonproportional damping are considered through pseudo-force terms. The modal coordinates uncoupled equations are iteratively solved. The treatment of initial conditions in the frequency domain which is necessary for the treatment of the uncoupled equations is initially adressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä työssä tutkittiin FE-analyysin soveltamista S960 QC teräksisen I-profiilin kestävyyden määrittämisessä. Työn tavoitteena oli tarkastella nykyisten suunnitteluohjeiden soveltuvuutta ultralujille teräksille ja koota ohjemateriaali I-profiilin optimoimisesta sekä FE-analyysin hyö-dyntämisestä I-profiilin staattisen ja dynaamisen kestävyyden määrittämisessä. I-profiili mitoitettiin ja optimoitiin Eurokoodi 3:ssa esitettyjen PL3 mukaisten mitoitusohjeiden avulla. Rakenteelle suoritettiin Eurokoodi 3:n ja IIW:n mukaiset lommahdus-, kiepahdus- ja vä-symiskestävyystarkastelut. Väsymistarkastelussa sovellettiin nimellisen jännityksen, rakenteelli-sen jännityksen ja tehollisen lovijännityksen menetelmiä sekä murtumismekaniikkaa. Rakenteel-lisen jännityksen menetelmässä sovellettiin lisäksi lineaarista ja parabolista pintaa pitkin ekstra-polointia, paksuuden yli linearisointia sekä Dong:in menetelmää. Lommahdus-, kiepahdus- ja väsymistarkasteluissa hyödynnettiin analyyttistä laskentaa, FE-analyysiä sekä Frank2d sovellusta. Tarkastelujen perusteella voidaan todeta, että analyyttisillä menetelmillä saadaan numeerisia me-netelmiä varmemmalla puolella olevia tuloksia. Lommahdustarkastelussa ero tulosten välillä on suurimmillaan 8 % ja kiepahdustarkastelussa suurimmillaan 20 % mutta väsymistarkastelussa saadut tulokset eroavat keskenään huomattavasti. Väsymistarkastelussa tehollisen lovijännityksen menetelmällä sekä rakenteellisen jännityksen menetelmän Dong:in menetelmällä saadaan huo-mattavasti muita menetelmiä pidempiä kestoikiä, kun taas yksinkertaisemmilla menetelmillä saa-dut kestoiät ovat lyhyempiä. Rakenteen kestävyyden määrittäminen analyyttisillä menetelmillä on melko helppoa, mutta tu-lokset ovat monesti liian konservatiivisia. FE-analyysillä saadaan puolestaan hyvin tarkkoja tu-loksia mallin ollessa yksityiskohtainen. Mallintaminen on kuitenkin aikaa ja resursseja vievää ja vaatii käyttökokemusta. FE-analyysin mahdolliset hyödyt on aina arvioitava tapauskohtaisesti tarkasteltavan geometrian, kuormitusten ja reunaehtojen perusteella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron Emission Tomography (PET) using 18F-FDG is playing a vital role in the diagnosis and treatment planning of cancer. However, the most widely used radiotracer, 18F-FDG, is not specific for tumours and can also accumulate in inflammatory lesions as well as normal physiologically active tissues making diagnosis and treatment planning complicated for the physicians. Malignant, inflammatory and normal tissues are known to have different pathways for glucose metabolism which could possibly be evident from different characteristics of the time activity curves from a dynamic PET acquisition protocol. Therefore, we aimed to develop new image analysis methods, for PET scans of the head and neck region, which could differentiate between inflammation, tumour and normal tissues using this functional information within these radiotracer uptake areas. We developed different dynamic features from the time activity curves of voxels in these areas and compared them with the widely used static parameter, SUV, using Gaussian Mixture Model algorithm as well as K-means algorithm in order to assess their effectiveness in discriminating metabolically different areas. Moreover, we also correlated dynamic features with other clinical metrics obtained independently of PET imaging. The results show that some of the developed features can prove to be useful in differentiating tumour tissues from inflammatory regions and some dynamic features also provide positive correlations with clinical metrics. If these proposed methods are further explored then they can prove to be useful in reducing false positive tumour detections and developing real world applications for tumour diagnosis and contouring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB) is one variant seeing increasing use, because it is self-aligning and can support high loads. It is becoming increasingly important to understand how the SRB responds dynamically under a variety of conditions. This doctoral dissertation introduces a computationally efficient, three-degree-of-freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to nonlinear Hertzian contact theory. The results reveal how some of the more important parameters; such as diametral clearance, the number of rollers, and osculation number; influence ultimate bearing performance. Distributed defects, such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. Simulation results were verified with results obtained by applying the formula for the spherical roller bearing radial deflection and the commercial bearing analysis software. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system to demonstrate the application of this newly developed SRB model in a typical real world analysis. Accuracy of the model was verified by comparing measured to predicted behaviors for equivalent systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.