999 resultados para Dual port shaped antenna
Resumo:
Several study areas were investigated at two Port Colborne terneries during the summers of 1973 and 1974 in an attempt to determine the influence of clutch size, time of clutch initiation, position in the colony, proximity to Ring-billed Gulls, vegetation and nesting substrate on the reproductive performance of the Common Tern. Hatching success and reproductive success (the number of chicks fledged per egg laid) were generally higher for 3-egg than 2-egg clutches but fledging (the number of chicks fledged per egg hatched) success was usually independant of clutch size. Hatching, fledging and reproductive success declined as a function of time of clutch initiation. Mean clutch sizes also generally declined as a function of time. Nests located in the center of the colony exhibited higher fledging success than those on the periphery. Rock-based clutches had a lower hatching success than clutches initiated on sand or dried vegetation. Reproductive performance did not appear to be related to proximity to Ring-billed Gulls or vegetation within the study area.
Resumo:
Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.
Resumo:
This archive contains materials relating to the Port Weller Dry Docks Limited. The bulk of the materials are correspondence. The collection also includes biographical information, photographs and media releases. The materials have been kept in original order, except where noted. The fonds contains materials relating to Port Weller Dry Docks Limited. The materials included correspondence, photographs, media releases including clippings, photographs and some biographical information. Also included are brochures and programs from ship christenings.
Resumo:
Benjamin Pawling and Peter Ten Broeck were the earliest known settlers of this area. The village of Port Dalhousie owes its existence to the building of the first Welland Canal in 1824. The village was incorporated in 1862 and as a town in 1948. In the early 1960s it became amalgamated with the city of St. Catharines. Port Dalhousie remains a distinctive part of the city today (2009).
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Dalhousie and Grantham Township. Identified structures associated with the Canal include Lock 1, Lighthouse, Lighthouse Keeper's House, East and West Piers, Harbour, Waste Weir, Store House, Collector's Office, Collector Assistant Office, Lock Tender's House and the new towing path. Features of the First Welland Canal are noted in red ink and includes the old Harbour, old Lock 1, old towing path and the original bed of the Twelve Mile Creek. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include streets and roads (ex. Lock Street and Colonel Clark's Cattle Road), Alex Muir's Dry Dock, RandJ Laurie Flouring Mill, R. Laurie and Company Grist Mill, A. Morrison Saw Mill, Johnson's Tavern, a store and a church. Properties and property owners of note are: Concession 1 Lots 21 and 22, John Christie, John Clark, N. Pawling, William Pawling, W. Carter, G.A. Clark, J. Maven, Mrs. Wood, James Drabble and J. Woodall.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Dalhousie and Grantham Township. Identified structures associated with the Canal include Lock 1, East and West Piers, Collector's Office, Lock Tender's House and the new towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include streets and roads (ex. Road to St. Catharines, Side Line, Old Road to Port Dalhousie, Road to Niagara), the Welland Railway and its structures (ex. freight sheds, wood shed, raised platform, elevator, cranes, water tank, turn table, and passenger station), G. A. Clark's Wood Yard, Clark's Wood Office, Alex Muir's Dry Dock, Donald, Andrews and Ross' Dry Dock, RandJ Laurie Flouring Mill, R. Laurie and Company Grist Mill and A. Morrison Saw Mill. A New Road to St. Catharines is featured in red ink. Properties and property owners of note are: Concession 1 Lots 19, 20 and 21, John Christie, and John Clark.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal at Port Robinson. Identified structures and features associated with the Canal include the Deep Cut, Old Channel of Canal, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Road to Port Allanburg), the Spoil Bank, an island, several bridges, and a church. Several unidentified structures are present but not labeled. Properties and property owners of note are: Lots 202, 203, and 204. Lot 203 is divided into several properties labeled A - J. Owners of these properties include James McCoppen, John Coulter, James Griffith, John C. Jordan, W. Hendershot, John Greer, Charles Richards, C. Stuart, and S. D. Woodruff. Other property owners include D. McFarland.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing Port Robinson and the canal to Chippewa Creek. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Front Street, Bridge Street, and Cross Street), the Welland railroad, Dry Dock leased to D. McFarland and Abbey, G. Jordan Tavern, D. McFarland and Co. Burnt Saw Mill, I. Pew Shop, Old Locks, New Lock, Canal to Chippewa Creek, Chippewa Creek, covered drain from dry dock, a barn and several bridges. Properties and property owners of note are: Lots 202, Broken Front lots 202 and 203, D. McFarland, and G. Jordan.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal as it passes through Port Robinson. Identified structures associated with the Canal include the Guard Lock, Collector Toll Office, towing path, and the New Cut of the canal. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Island Street, Bridge Street, John Street, and Cross Street), bridges (Swing Bridge, and several unnamed bridges), Welland Railroad, Canal to Chippewa Creek (and two old locks and one new lock associated with the canal), Chippewa Creek, Back Water, an unnamed Island, Dry Dock leased to McFarland and Abbey, Abbey's Office, D. McFarland and Co. Saw Mill (Burnt), G. Jordan Tavern, Robert Elliot Store House and Wharf, Isaac Pew's Shop, Colemans Hotel, R. Band and Co. Girst Mill, Donaldson and Co. Grist Mill, H. Marlatt Dwelling House and barn, Henry W. Timms Hotel, Methodist Church, Post Office, Blacksmith Shop, a church, a structure labeled B. Patch, and a number of other structures that are not named. Properties and property owners of note are: Lots 202 and 203, S. Hill, D. McFarland, Church Society, G. Jordan, D. Coleman, John Brown, Rob Coulter, Robert Elliot, Isaac Pew, James McCoppen, William Bell, Charles Stuart, Andrew Elliot, Robert Band, Ed. Feney, John Betty, F. Sharp, William B. Hendershot, A. Brownson, H. Marlatt, J. S. Powell, and the School Trustees. Two reserved properties are labeled in red.The current spelling of Chippewa Creek is Chippawa. Although it not possible to make out the entire name of the H. W. Timms hotel located at Front and Bridge Street on the map itself, it was discovered to belong to Henry W. Timms after consulting the 1851-52 Canada Directory.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal along Chippewa Creek in Thorold Township. Identified structures and features associated with the Canal include the towing path, float bridge, and the waterway itself. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include a road allowance between Lot 213 and 214, Chippewa Creek, an unnamed creek, and the Old Canal. Wetlands adjacent to Chippewa Creek are illustrated. Properties and property owners of note are: Lots 213 and 214, Samuel Hill, and Duncan Coleman. The boundary of the land deeded to Coleman is outlined in blue.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Colborne. Identified structures associated with the Canal include Lighthouse, Pier Light, Old Lock House, Collector's Office, Harbour Master's House, Canal Boundary, Back Ditch, Reserved Back Ditch, Basin, Light-Keeper's House and Ferry Recess. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include Gordon's Woodyard, Welland Rail Road, Welland Railway Elevator and Proposed Elevator, W.R.R. Flour Shed, Roman Catholic Church, School House, Sandhills, Lake Erie, and the High Water Mark. Streets running parallel to Canal include King St., West St., East St., Queen St., Hamilton St., and the Road Allowance are labelled. Streets running perpendicular to Canal include Kent St., Victoria St., Adelaide St., SugarLoaf St., George St., Alexandrina St., William St., Fort Erie St., Lake Rd., and New Road to Dutch Settlement are also labelled. Property owners and leasers as well as buildings on lots are also idenitified and noted as follows: Adams estate, J. Towhig, J.C. Kerr, Mrs. Hill, S. Cooke, Mrs. Yocum, W.T. Cooke, P. Wintermute, J. Shickluna, William Cooke, J. McChesney, John Beatty, W. Robertson, John Gordon, T. Armstrong, John Harper, George Keefer, Estate of James Black, Thomas Park, N. Higgins, S. Hopkins, and L.G. Cartier. Map of the Village of Port Colborne. Being Lot No. 27 and part of Lot No. 28 in the 1st Con. Township of HUMBERSTONE. Scale 2 Chs. per Inch. land shaded in RED Owned by DEPT. Do. Do. BLUE Sold to the COUNTY of WELLAND
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Colborne and Grantham Township. Identified structures associated with the Canal include Basin, Guard Lock, Two Lock Tender Houses, Lock House Lot, Collectors Office House, Towing Path, North and South Back Ditches, and land reserved for future improvemnt of basin. Surveyor measurements and notes can be seen in red and black ink as well as pencil. Local area landmarks dentified include Bridge, Rail Road Swing Bridge, Spoil Bank, Water Tank, Frazer Street Railway Station, Buffalo and Lake Huron Rail Road, Welland Rail Road, and land reserved for "Gardens for Lock Tenders". Local businesses identified include A.K Scholfield Store House Lot and Wharf, two stores and a tavern. Roads running parallel to Canal include King St., "present Travel Road", and the Southern Road Allowance. Roads running perpendicular to Canal include Kent St., Charlotte St., Clarence St., Princess St., Elgin St., George St., Frazer St., Alma St., Eastern Road Allowance. Properties and property owners are also identified and include P. White, John Flynn, George McMicking, Charles Carter, William H. Merritt, A.K. Scholfield, F. Gallgher, Ed McCabe, M. Smith, E. Lawder, J. Hanley, J. Harris, P. Gibbons, M. McGoveran, M. Madden, J. Hardison, T. Nihan, D. Gibbons, J. Cross, William Mellanby, Elis Gordon, Jane McCardy, L.G. Carter, T. Greenwood, C. Armstrong, J. McGillivray, T. Schofield, Mrs. Lanue, D. Mc_______, K. Minor, J. Manly and John McRae.
Resumo:
Self-dual doubly even linear binary error-correcting codes, often referred to as Type II codes, are codes closely related to many combinatorial structures such as 5-designs. Extremal codes are codes that have the largest possible minimum distance for a given length and dimension. The existence of an extremal (72,36,16) Type II code is still open. Previous results show that the automorphism group of a putative code C with the aforementioned properties has order 5 or dividing 24. In this work, we present a method and the results of an exhaustive search showing that such a code C cannot admit an automorphism group Z6. In addition, we present so far unpublished construction of the extended Golay code by P. Becker. We generalize the notion and provide example of another Type II code that can be obtained in this fashion. Consequently, we relate Becker's construction to the construction of binary Type II codes from codes over GF(2^r) via the Gray map.
Resumo:
TGA2 is a dual-function Systemic Acquired Resistance (SAR) transcription factor involved in the activation and repression of pathogenesis-related (PR) genes. Recent studies have shown that TGA2 is able to switch from a basal repressor to activator, likely, through regulatory control from its N-terminus. The N-terminus has also been shown to affect DNA binding of the TGA2 bZIP domain when phosphorylated by Casein Kinase II (CK2). The mechanisms involved for directing a switch from basal repressor to activator, and the role of kinase activity, have not previously been looked at in detail. This study provides evidence for the involvement of a CK2-like kinase in the switch of TGA2 activity from repressor to activator, by regulating the DNA-binding activity of TGA2 by phosphorylating residues in the N terminus of the protein.
Resumo:
Micromorphology is used to analyze a wide range of sediments. Many microstructures have, as yet, not been analyzed. Rotation structures are the least understood of microstructures: their origin and development forms the basis of this thesis. Direction of rotational movement helps understand formative deformational and depositional processes. Twenty-eight rotation structures were analyzed through two methods of data extraction: (a) angle of grain rotation measured from Nikon NIS software, and (b) visual analyses of grain orientation, neighbouring grainstacks, lineations, and obstructions. Data indicates antithetic rotation is promoted by lubrication, accounting for 79% of counter-clockwise rotation structures while 21 % had clockwise rotation. Rotation structures are formed due to velocity gradients in sediment. Subglacial sediments are sheared due to overlying ice mass stresses. The grains in the sediment are differentially deformed. Research suggests rotation structures are formed under ductile conditions under low shear, low water content, and grain numbers inducing grain-to-grain interaction.