993 resultados para Dry matter accumulation rate
Resumo:
The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.
Resumo:
Land-based aquaculture facilities experience occasional hypercapnic conditions due to the accumulation of the metabolic waste product carbon dioxide. Pre-gonadal Lytechinus variegatus (horizontal diameter=20 mm) were exposed to control (608 µatm pCO2, pH 8.1) or hypercapnic conditions (1738 µatm pCO2, pH 7.7) in synthetic seawater for 14 weeks. Sea urchins exposed to hypercapnic conditions exhibited significantly slower growth (reduced dry matter production), primarily due to reduced test production. Higher fecal production rates and lower ash absorption efficiency (%) in individuals exposed to hypercapnic conditions suggest the ability to process or retain dietary carbonates may have been affected. Significant increases in neutral lipid storage in the gut and increased soluble protein storage in the gonads of individuals exposed to hypercapnic conditions suggest alterations in nutrient metabolism and storage. Furthermore, organic production and energy allocation increased in the lantern of those individuals exposed to hypercapnic conditions. These results suggest chronic exposure to hypercapnic conditions alters nutrient allocation to organ systems and functions, leading to changes in somatic and reproductive production.
Resumo:
Late Miocene-Recent micropaleontological and geochemical records from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) indicate that increase and decrease in abundance of siliceous plankton may be controlled mainly by the input of nutrients derived from land and provided by upwelling. A high export production event - a "biogenic bloom" event - occurred in the southern SCS between 12 and 6 Ma. During this period, high ratios of smectite/(illite + chlorite), smectite/quartz and Al/K indicate a high weathering intensity of the Asian continent, possibly due to the intensification of the East Asian Summer Monsoon (EASM), which may have increased the net flux of nutrients to the ocean, both directly through terrestrial input and indirectly through upwelling activity. A drop in Ba/Ti, Al/Ti and Ca/Ti values around 6 Ma may indicate a lowering of productivity, possibly due to the large consumption of sea surface nutrients by the "biogenic bloom". Alternatively, it may indicate a shift in terrigenous input source area. At about 5.4 Ma, a decrease in weathering intensity, as indicated by a sudden decrease in the values of smectite/(illite + chlorite), smectite/quartz and Al/K, might have led to a sudden decrease of terrestrial nutrient input to the SCS. We suggest that the biogenic bloom ended when nutrients in surface waters were exhausted, because of a decrease in supply as well as a decrease in upwelling intensity due to weakening of the EASM. As a result, radiolarians were absent in the studied area between ~6 and 3.2 Ma. At ~3.2 Ma, radiolarians began to recover, possibly because the start of Northern Hemispheric glaciation and the rapid uplift of the Tibet Plateau led to intensification of the East Asian monsoon. After the Mid-Pleistocene Climate Transition at 0.9 Ma, the abundance and mass accumulation rates of radiolarians increased, probably as a result of increased upwelling activity driven by the increasing intensity of the summer monsoon.
Resumo:
Peat and net carbon accumulation rates in two sub-arctic peat plateaus of west-central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600-5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long-term peat and net carbon accumulation rates for both profiles are 0.30-0.31 mm/yr and 12.5-12.7 gC/m**2/yr, respectively. These values reflect very slow peat accumulation (0.04-0.09 mm/yr) and net carbon accumulation (3.7-5.2 gC/m**2/yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.
Resumo:
This datafile presents chemical and physical as well as age dating information from the Store Mosse peat bog in southern Sweden. This record dates back to 8900 cal yr BP. The aim of the research was to reconstruct mineral dust deposition over time. As such we have only presented the lithogenic element data (Al, Ga, Rb, Sc, Ti, Y, Zr, Th and the REE) as the sample preparation method was tailored to these. This data is supported by parameters describing the deposit including bulk density, humification, ash content and net peat accumulation rates.
Resumo:
Understanding changes in export production through time provides insight into the response of the biological pump to global climate change, particularly during periods of rapid climate change. In this study we consider what role changes in export production may have had on carbon sequestration and how this may have contributed to the onset of the Eocene-Oligocene transition (EOT). In addition, we consider if these export production variations are dominantly controlled by orbitally driven climate variability. To accomplish these objectives, we report changes in export production in the Eastern Equatorial Pacific (EEP) from Site U1333 across the EOT reconstructed from a high-resolution record of marine barite accumulation rates (BAR). BAR fluctuations suggest synchronous declines in export production associated with the two-step increases in oxygen isotopes that define the transition. The reduction in productivity across the EOT suggests that the biological pump did not contribute to carbon sequestration and the cooling over this transition. We also report a previously undocumented peak in EEP export productivity before the EOT onset. This peak is consistent with export production proxies from the Southern Ocean, potentially implying a global driver for this precursor event. We propose that this enhanced export production and the associated carbon sequestration in the late Eocene may have contributed to the pCO2 drawdown at the onset of Antarctic glaciation.
Resumo:
Uncertainty currently exists about the removal of carbon (C) and phosphorus (P) from the oceanic reservoir, especially in low oxygen settings. In this paper, the cycling of C and P is examined in sediments from the anoxic Saanich Inlet, cored by Ocean Drilling Program (ODP) Leg 169S in 1996 at two sites. Although Corg/Porg ratios are high and increase with depth in the Saanich Inlet, this effect is due largely to a remobilization of P from an organic matter sink to an authigenic sink. Reducible sedimentary components act as temporary shuttles in this process even in this anoxic setting, with the ultimate burial sink for the remobilized P being carbonate fluorapatite. The effective Corg/Preactive molar ratio appears to be about 150-200, indicating some preferential loss of P compared to C during organic matter degradation, but not approaching previously reported values of over 3000 in black shales. Reactive P accumulation rates in this basin range from 10,000-60,000 µmol/cm**2/kyr, greatly exceeding the range of 500-8000 µmol/cm**2/kyr found in most continental-margin settings, including regions of modern phosphogenesis. The initiation of marine sedimentation in the Saanich Inlet occurred after deglaciation, and the high rates of P burial seen here may provide an end-member example of the effects of sea level and margin sedimentation on the distribution of P within the marine P cycle.
Resumo:
Stable carbon isotope ratios in the organic fraction of surface sediments from the Laptev Sea shelf were analyzed in order to study the modern distribution pattern of terrestrial organic matter. The delta13Corg signature of the surface sediments range from -26.6? near the coastal margin to -22.8? in the north towards the outer shelf. Characterizing the possible sources of organic matter by their delta13Corg signature reveals that the terrestrial influence reaches further north in the eastern than in the western Laptev Sea. Downcore records of the delta13Corg, measured on three AMS 14C-dated cores from water depths between 46 and 77 m, specify the spatial and temporal changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the past 12.7 ka. The major depositional changes of terrestrial organic matter occurred between 11 and 7 ka and comprised the main phase of the southward retreat of the coastline and of the river depocenters due to the postglacial sea level rise.
Resumo:
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world's largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and d13Corg, ranged from 10 to 12.5 and from -24.5 to -21 per mill VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 µg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core. Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the d13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments. Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.
Resumo:
Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world ~112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate ~25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere-land-ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (~45,000 yr) period of ~0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns 2003, doi:10.1098/rsta.2003.1240] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 * 10**18 g methane carbon (delta13C=-60 ?), equivalent to about 10% to the total modern gas hydrate inventory, generated the delta13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over ~25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.
Resumo:
The knowledge of molybdenum application in legumes on the availability of N, by BNF, increased enzymatic activity and the residual effect caused on crops growth and yield can contribute to the greater scientific understanding involved in green manure processes. The aim of this study was to evaluate the Mo application and the N from Crotalaria juncea and Canavalia ensiformis green manures on common bean performance. Were conducted field experiments for the crops succession system (green manures - common bean) and laboratory essays for the enzymatic activities. Green manure production was installed in a factorial arrangement 2 x 4, with two green manure legumes species, sunnhemp (Crotalaria juncea) and jack beans (Canavalia ensiformis), and four Mo doses (0, 40, 80, 120 g ha-1) in the form of sodium molybdate (Na2MoO4), foliar applied, in a randomized block design with four replicates. For succession crop (common bean) additional treatment was added, beans grown without any fertilization, following the same experimental design from the previous crop. The dry matter decomposition and the N mineralization of green manure were monitored through collection of residues over time, by using the litter bags method. In laboratory were carried out tests of nitrate reductase activity in green manures and common beans at 90 and 66 days after sowing, respectively. The sunnhemp responded linearly positively to the application of Mo as the dry matter and N accumulation. While the jack beans presented a negative quadratic response for dry matter and there was no adjustment of regression models to N. The jack beans showed a higher decomposition rate and N mineralization compared to sunnhemp. The half lives for decomposing 50% of dry matter on the soil was 123 and 104 days to sunnhemp and jack beans, respectively, and 50% of N present in the residues was mineralized at 93 and 85 days. In common bean, differed from the control for number of pods the dose of 40 g ha-1 of Mo in both species of green manures and the dose 80 g ha-1 of Mo in jack beans. For number of grains only in sunnhemp on the dose of 40 g ha-1 of Mo differ from the control. The nitrate reductase activity was influenced by developmental stage of green manure species. In common bean, the activity of nitrate reductase was up to three times higher than the dose 0 g ha-1 of Mo compared to treatment with application of Mo in both species. There was no effect of Mo doses or species of green manure on common bean yield.
Resumo:
To achieve high yields the corn crop is dependent on nitrogen. Systems of cover crops preceding corn and form of land cultivation are essential for the best use of nitrogen by corn. This study aimed to evaluate the use or not of nitrogen fertilization in corn in succession to cover crops, planted in three cropping systems. The experimental design was randomized blocks with sub-divided portion where the main plots consisted of three cultivation systems (tillage, conventional tillage and minimum tillage), the subplots by four plant cover in monocrop (oat, hairy vetch, field peas and turnip) and sub-subplots by nitrogen fertilization (0 and 160 kg ha-1 N). Evaluations were performed, the cover crops, soil cover rate, dry matter, content and accumulation of nutrients. In corn we evaluated yield components, yield, chlorophyll and nutrient levels in leaves. Among the species coverage studied the oat showed hardiness in the experiment, covering ground faster and showing more dry matter, however vetch hairy showed higher concentrations of N, P and K and higher accumulation of N ha-1. The soil tillage system influenced the K leaf content. The interaction cultivation x coverage showed significance for the total chlorophyll of corn. In the absence of N, N content and chlorophyll were higher where the corn was sown on the pea and hairy vetch. The corn production, despite a higher average in the presence of nitrogen fertilization, did not differ significantly when used the pea and hairy vetch as a cover crop.
Resumo:
Piracanjuba (Brycon orbignyanus) is a Brazilian migratory fast-growing omnivore, very appreciated as a sport fish, which is threatened to extinction in Southern Brazil due to stock over exploitation and dam building. Therefore, efforts have been made to raise this fish in captivity for reintroduction and aquaculture purposes. In the present study, the effects of different dietary protein and lipid concentrations on piracanjuba fingerlings growth performance, feed utilization, body composition, hepatosomatic index (HSI) and activity of the lipogenic enzymes fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) were investigated using a 2 x 3 factorial experiment. Six casein-gelatin based diets were prepared combining two protein (30% and 32%) and three lipid concentrations (5.5%, 8.8% and 12.1%). Eleven fish, average weight 11.30 +/- 0.1 g, were held in each of 18 100-1 aquaria, supplied with recirculating freshwater. Each diet was randomly assigned to triplicate groups of fish and fed to apparent satiation, twice a day for 100 d. Piracanjuba fingerlings' daily weight gain (0.36-0.40 g), specific growth rate (1.43-1.51%), feed utilization and HSI were not influenced by dietary protein or lipid concentration. However, body composition was directly affected by dietary treatment. An increase in body fat and dry matter was observed as dietary lipid increased, for both dietary protein concentrations tested. The activity of FAS was depressed by increasing dietary fat levels but the G6PD activity did not differ among dietary treatments, although ME activity showed some regulation by dietary protein. These results indicate that an increase from 5.5% to 12.1% in the dietary lipid, at a dietary protein concentration of 30% or 32%, promotes body fat accumulation in piracanjuba fingerlings with no improvement in growth, suggesting that the lipid requirement for this species should be 5% or less, when raised for commercial purposes. However, the additional energy reserve from body fat accumulation could be desirable for piracanjuba fingerlings produced for stock enhancement. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.
Resumo:
There is a lack of researches that evaluate the development and nutrient accumulation in super early genotypes of common bean for the elaboration of fertilization programs. This study aimed at characterizing the development; N, P, K, Ca and Mg accumulation by leaves; grain yield; and yield components of super early genotypes of common bean. Field experiments were conducted in a randomized blocks design, with four replications. The treatments consisted of the IPR Colibri (control), CNFC 15873, CNFC 15874 and CNFC 15875 genotypes. Plants were sampled throughout the common bean development, being divided into leaves, stems and pods. After determining the dry matter, the contents of N, P, K, Ca and Mg accumulated in leaves were estimated. At harvesting, the grain yield and yield components were evaluated. The biomass accumulation in stems and leaves occurred until the flowering stage, and then it started in the pods until harvesting. The genotypes that absorbed more nitrogen and phosphorus had a higher grain yield. The average growing season of super early genotypes was 70 days (winter) and 63 days (summer). CNFC 15874 was the most productive genotype in the winter, with grain yield similar to the IPR Colibri cultivar (control). In the summer, CNFC 15873 and CNFC 15875 achieved grain yield similar to the IPR Colibri cultivar.