894 resultados para DoS-resistant Protocol, SSL and HIP Model in CPN, CPN Simulation and Verification
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.
Resumo:
A Geant4 based simulation tool has been developed to perform Monte Carlo modelling of a 6 MV VarianTM iX clinac. The computer aided design interface of Geant4 was used to accurately model the LINAC components, including the Millenium multi-leaf collimators (MLCs). The simulation tool was verified via simulation of standard commissioning dosimetry data acquired with an ionisation chamber in a water phantom. Verification of the MLC model was achieved by simulation of leaf leakage measurements performed using GafchromicTM film in a solid water phantom. An absolute dose calibration capability was added by including a virtual monitor chamber into the simulation. Furthermore, a DICOM-RT interface was integrated with the application to allow the simulation of treatment plans in radiotherapy. The ability of the simulation tool to accurately model leaf movements and doses at each control point was verified by simulation of a widely used intensity-modulated radiation therapy (IMRT) quality assurance (QA) technique, the chair test.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Organizations invest heavily in Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems, and their related infrastructure, presumably expecting positive benefits to the organization. Assessing the benefits of such systems is an important aspect of managing such systems. Given the substantial differences between CRM and SCM systems with traditional intra-organizational applications, existing Information Systems benefits measurement models and frameworks are ill-suited to gauge CRM and SCM benefits. This paper reports the preliminary findings of a research that seeks to develop a measurement model to assess benefits of CRM and SCM applications. The a-priori benefits measurement model is developed reviewing the 55 academic studies and 40 practitioner papers. The review of related literature yielded 606 benefits, which were later synthesized into 74 mutually exclusive benefit measures of CRM and SCM applications arranged under five dimensions.
Resumo:
Although there are widely accepted and utilized models and frameworks for nondirective counseling (NDC), there is little in the way of tools or instruments designed to assist in determining whether or not a specific episode of counseling is consistent with the stated model or framework. The Counseling Progress and Depth Rating Instrument (CPDRI) was developed to evaluate counselor integrity in the use of Egan's skilled helper model in online counseling. The instrument was found to have sound internal consistency, good interrater reliability, and good face and convergent validity. The CPDRI is, therefore, proposed as a useful tool to facilitate investigation of the degree to which counselors adhere to and apply a widely used approach to NDC
Resumo:
Between 1987 and 1999, 540 revision total hip replacements in 487 patients were performed at our institution with the femoral impaction grafting technique with a cemented femoral stem. All patients were prospectively followed for 2-15years post-operatively with no loss to follow-up. 494 hips remained successfully in situ at an average 6.7years. The ten year survival rate was 98.0% (95% CI 96.2 to 99.8) with aseptic loosening as the endpoint and 84.2% (95% CI 78.5 to 89.9) for re-operation for any reason. Indication for surgery and the use of any kind of reinforcement significantly influenced outcome (p<0.001). This is the largest known series of revision THR with femoral impaction grafting and the results support continued use of this technique.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, “to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice” (Gable et al, 2006). IS-Impact is defined as “a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups” (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the “impact” half includes Organizational-Impact and Individual-Impact dimensions; the “quality” half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalizable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employ perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalization of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. The objective of this study is to develop a Mandarin version IS-Impact model, encompassing a list of China-specific IS-Impact measures, aiding in a better understanding of the IS-Impact phenomenon in a Chinese organizational context. The IS-Impact model provides a much needed theoretical guidance for this investigation of ES and ES impacts in a Chinese context. The appropriateness and soundness of employing the IS-Impact model as a theoretical foundation are evident: the model originated from a sound theory of IS Success (1992), developed through rigorous validation, and also derived in the context of Enterprise Systems. Based on the IS-Impact model, this study investigates a number of research questions (RQs). Firstly, the research investigated what essential impacts have been derived from ES by Chinese users and organizations [RQ1]. Secondly, we investigate which salient quality features of ES are perceived by Chinese users [RQ2]. Thirdly, we seek to answer whether the quality and impacts measures are sufficient to assess ES-success in general [RQ3]. Lastly, the study attempts to address whether the IS-Impact measurement model is appropriate for Chinese organizations in terms of evaluating their ES [RQ4]. An open-ended, qualitative identification survey was employed in the study. A large body of short text data was gathered from 144 Chinese users and 633 valid IS-Impact statements were generated from the data set. A generally inductive approach was applied in the qualitative data analysis. Rigorous qualitative data coding resulted in 50 first-order categories with 6 second-order categories that were grounded from the context of Chinese organization. The six second-order categories are: 1) System Quality; 2) Information Quality; 3) Individual Impacts;4) Organizational Impacts; 5) User Quality and 6) IS Support Quality. The final research finding of the study is the contextualized Mandarin version IS-Impact measurement model that includes 38 measures organized into 4 dimensions: System Quality, information Quality, Individual Impacts and Organizational Impacts. The study also proposed two conceptual models to harmonize the IS-Impact model and the two emergent constructs – User Quality and IS Support Quality by drawing on previous IS effectiveness literatures and the Work System theory proposed by Alter (1999) respectively. The study is significant as it is the first effort that empirically and comprehensively investigates IS-Impact in China. Specifically, the research contributions can be classified into theoretical contributions and practical contributions. From the theoretical perspective, through qualitative evidence, the study test and consolidate IS-Impact measurement model in terms of the quality of robustness, completeness and generalizability. The unconventional research design exhibits creativity of the study. The theoretical model does not work as a top-down a priori seeking for evidence demonstrating its credibility; rather, the study allows a competitive model to emerge from the bottom-up and open-coding analysis. Besides, the study is an example extending and localizing pre-existing theory developed in Western context when the theory is introduced to a different context. On the other hand, from the practical perspective, It is first time to introduce prominent research findings in field of IS Success to Chinese academia and practitioner. This study provides a guideline for Chinese organizations to assess their Enterprise System, and leveraging IT investment in the future. As a research effort in ITPS track, this study contributes the research team with an alternative operationalization of the dependent variable. The future research can take on the contextualized Mandarin version IS-Impact framework as a theoretical a priori model, further quantitative and empirical testing its validity.
Resumo:
Just Fast Keying (JFK) is a simple, efficient and secure key exchange protocol proposed by Aiello et al. (ACM TISSEC, 2004). JFK is well known for its novel design features, notably its resistance to denial-of-service (DoS) attacks. Using Meadows’ cost-based framework, we identify a new DoS vulnerability in JFK. The JFK protocol is claimed secure in the Canetti-Krawczyk model under the Decisional Diffie-Hellman (DDH) assumption. We show that security of the JFK protocol, when reusing ephemeral Diffie-Hellman keys, appears to require the Gap Diffie-Hellman (GDH) assumption in the random oracle model. We propose a new variant of JFK that avoids the identified DoS vulnerability and provides perfect forward secrecy even under the DDH assumption, achieving the full security promised by the JFK protocol.
Resumo:
We report the application of a novel scaffold design in a sheep thoracic spine model for spine deformity correction. The combination of the calcium-phosphate coated polycaprolactone scaffolds with recombinant human bone morphogenic protein-2 (rhBMP-2) are intended as a future bone graft substitute in ensuring the stability of bony intervertebral fusion. A solid free-form fabrication process based on melt extrusion has been utilized in the manufacturing of these scaffolds. To date there are no studies examining the use of such biodegradable implants in a sheep thoracic spine model. The success of anterior scoliosis surgery in humans depends on achieving a solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Due to limited availability of autograft, there is much current interest in the development of synthetic scaffolds in combination with growth factors such as recombinant human bone morphogenetic protein (rhBMP-2) to achieve a solid bony fusion following scoliosis surgery.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Increasing resistance of rabbits to myxomatosis in Australia has led to the exploration of Rabbit Haemorrhagic Disease, also called Rabbit Calicivirus Disease (RCD) as a possible control agent. While the initial spread of RCD in Australia resulted in widespread rabbit mortality in affected areas, the possible population dynamic effects of RCD and myxomatosis operating within the same system have not been properly explored. Here we present early mathematical modelling examining the interaction between the two diseases. In this study we use a deterministic compartment model, based on the classical SIR model in infectious disease modelling. We consider, here, only a single strain of myxomatosis and RCD and neglect latent periods. We also include logistic population growth, with the inclusion of seasonal birth rates. We assume there is no cross-immunity due to either disease. The mathematical model allows for the possibility of both diseases to be simultaneously present in an individual, although results are also presented for the case where co infection is not possible, since co-infection is thought to be rare and questions exist as to whether it can occur. The simulation results of this investigation show that it is a crucial issue and should be part of future field studies. A single simultaneous outbreak of RCD and myxomatosis was simulated, while ignoring natural births and deaths, appropriate for a short timescale of 20 days. Simultaneous outbreaks may be more common in Queensland. For the case where co-infection is not possible we find that the simultaneous presence of myxomatosis in the population suppresses the prevalence of RCD, compared to an outbreak of RCD with no outbreak of myxomatosis, and thus leads to a less effective control of the population. The reason for this is that infection with myxomatosis removes potentially susceptible rabbits from the possibility of infection with RCD (like a vaccination effect). We found that the reduction in the maximum prevalence of RCD was approximately 30% for an initial prevalence of 20% of myxomatosis, for the case where there was no simultaneous outbreak of myxomatosis, but the peak prevalence was only 15% when there was a simultaneous outbreak of myxomatosis. However, this maximum reduction will depend on other parameter values chosen. When co-infection is allowed then this suppression effect does occur but to a lesser degree. This is because the rabbits infected with both diseases reduces the prevalence of myxomatosis. We also simulated multiple outbreaks over a longer timescale of 10 years, including natural population growth rates, with seasonal birth rates and density dependent(logistic) death rates. This shows how both diseases interact with each other and with population growth. Here we obtain sustained outbreaks occurring approximately every two years for the case of a simultaneous outbreak of both diseases but without simultaneous co-infection, with the prevalence varying from 0.1 to 0.5. Without myxomatosis present then the simulation predicts RCD dies out quickly without further introduction from elsewhere. With the possibility of simultaneous co-infection of rabbits, sustained outbreaks are possible but then the outbreaks are less severe and more frequent (approximately yearly). While further model development is needed, our work to date suggests that: 1) the diseases are likely to interact via their impacts on rabbit abundance levels, and 2) introduction of RCD can suppress myxomatosis prevalence. We recommend that further modelling in conjunction with field studies be carried out to further investigate how these two diseases interact in the population.