933 resultados para Diurnal rhythm
Resumo:
The term 'sonata' arose in the early seventeenth-century Baroque period and was originally used to distinguish instrumental (sonata) music from vocal music. Later. the sonata style, as a reliable yet flexible compositional framework, was extensively shaped and utilized throughout the Classical period. Subsequently, in the Romantic period, freer creative, individualistic. and expressive musical elements began to be preferred by composers in their use of harmonj., tone color, form, and rhythm. However, even during the revolutionary Romantic period in music. the compositions which did not have a pre-defined format (character pieces, etc) were often comfortably framed and limited within the recognizable boundaries provided by the Classical sonata style. The sonata format, when used as a tool in musical composition, provides logical boundaries that may serve to organize any unexpected emotional expressions on the part of the composer. Yet the sonata framework is also flexible enough to allow freedom of expression. In the Romantic period and beyond, composers had relied, some more than others, upon the sonata's adaptable blend of stability and flexibility. In my opinion, it is more persuasive to express oneself musically within the framework of an established musical style. Thus, I have chosen my dissertation topic as the performance of six pieces incorporating elements of the reliable and flexible sonata style. The sonata of each composer that I have selected clearly demonstrates a tension between logic and emotion expressed within the sonata framework. However, the compositions can be divided interestingly into two groups, such as 'conservative' and 'progressive' group. The 'conservative' group consists of composers who seemed to strive for greater freedom of self-expression within the constraints of the traditional sonata form. On the other hand, the 'progressive' group consists of composers who seemed more to rely upon the sonata form to rein in and add stability to their highly individual and emotional musical ideas. It is my hope that this project will provide a stimulating viewpoint from which to consider the evolution and utilization of the sonata style especially as it is applied to the composition and performance of these six diverse and interesting pieces.
Resumo:
The early music revival of the late twentieth century revolutionized music with the birth of historically lnformed performance. With this revolution came a stereotype of the "early music singing voice" as small, bright, straight-toned, and unfortunately, often inferior techrucally to the mainstream opera singer. An assessment of the validity of this stereotype was made though readings of treatises and modern manuals of performance practice, and through listening to recordings. Sources on ornamentation, recitative, dance rhythm, and baroque gesture were examined, resulting in the finding that these issues are far more important to historical accuracy than are voice timbre and size. This dissertation is comprised of three historically informed performances intended to satisfy both the early music specialist and the mainstream voice teacher. Program One (May 15, 2004) is a performance of The "Peasant" Cantata, BWV 212, by J.S. Bach, with The Bach Sinfonia at the Washington Conservatory of Music. Program Two (January 29, 2005) is the role of Eurilla in a staged production of Antonio Vivaldi's serenata, Eurilla e Alcindo. The performance is a collaboration with the Baltimore-based ensemble, La Rocinante, and is conducted from the keyboard by Joseph Gascho. Program Three (March 14, 2005) is a solo recital entitled, Fairest Isle: Music of Baroque London. All three programs are documented in a digital audio format available on compact disc, with accompanying programs and notes also available in digital format.
Resumo:
This piece explores the changing nature of emotion focusing especially on the feeling of sorrow. The opening and ending parts of the first movement represent the overall motive of sorrow. The first movement opens with an augmented chord G-C#-F-B and from this chord the first violin expands upwards while the cello moves downwards towards the C chord (p.2). As the melody alternates between each part, there is a subtle change in harmony which creates tension and release and changes the sound color. In addition, ornamentation in each part reinforces the movement towards the C chord. This progression represents the inner emotion of lament. Sostenuto e largamente section (p.2) uses heterophony in order to express a feeling of chaos. Section Scherzando (p.4) uses the interval relationship M7 and m2, and is a respite from the overwhelming feeling of sorrow. The ending of the first movement (p.12) returns to create a second tension by every instrument ascending slowly, and the viola produces a distinctive melody derived from the previous chaotic section that ends on an Ab. The second movement contrasts with the first movement in order to express a concealed, not explicit, sorrow, and differs in both tempo and texture. The tempo is a waltz that is faster than the first movement. This produces a light, playful figure and a simple melody without much ornamentation. Imitation and canonic structure emphasize the individuality of the strings. The third movement merges material from the first movement rhythmic figure and the second movement pizzicato (p.17). It shows timbral change through con sordino, pizzicato arpeggio, and sul ponticello to display string techniques. An Allegro section (p.19) especially contrasts with Misterioso in rhythm and dynamics. In the Grazioso (p.22), random beats are accentuated by pizzicato arpeggio to de-emphasize the meter. Finally, there is a return to the ending figure of the first movement with con sordino (p.23) and sul ponticello in viola that articulates the internal tension and the timbral change to return to a voice of sorrow.
Resumo:
© 2013 The Association for the Study of Animal Behaviour.Social complexity, often estimated by group size, is seen as driving the complexity of vocal signals, but its relation to olfactory signals, which arguably arose to function in nonsocial realms, remains underappreciated. That olfactory signals also may mediate within-group interaction, vary with social complexity and promote social cohesion underscores a potentially crucial link with sociality. To examine that link, we integrated chemical and behavioural analyses to ask whether olfactory signals facilitate reproductive coordination in a strepsirrhine primate, the Coquerel's sifaka, Propithecus coquereli. Belonging to a clade comprising primarily solitary, nocturnal species, the diurnal, group-living sifaka represents an interesting test case. Convergent with diurnal, group-living lemurids, sifakas expressed chemically rich scent signals, consistent with the social complexity hypothesis for communication. These signals minimally encoded the sex of the signaller and varied with female reproductive state. Likewise, sex and female fertility were reflected in within-group scent investigation, scent marking and overmarking. We further asked whether, within breeding pairs, the stability or quality of the pair's bond influences the composition of glandular signals and patterns of investigatory or scent-marking behaviour. Indeed, reproductively successful pairs tended to show greater similarity in their scent signals than did reproductively unsuccessful pairs, potentially through chemical convergence. Moreover, scent marking was temporally coordinated within breeding pairs and was influenced by past reproductive success. That olfactory signalling reflects social bondedness or reproductive history lends support to recent suggestions that the quality of relationships may be a more valuable proxy than group size for estimating social complexity. We suggest that olfactory signalling in sifakas is more complex than previously recognized and, as in other socially integrated species, can be a crucial mechanism for promoting group cohesion and maintaining social bonds. Thus, the evolution of sociality may well be reflected in the complexity of olfactory signalling.
Resumo:
Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant
Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.
Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (
In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR);
In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene,
Resumo:
The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.
Resumo:
BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
© 2015. American Geophysical Union. All Rights Reserved.The role of surface and advective heat fluxes on buoyancy-driven circulation was examined within a tropical coral reef system. Measurements of local meteorological conditions as well as water temperature and velocity were made at six lagoon locations for 2 months during the austral summer. We found that temperature rather than salinity dominated buoyancy in this system. The data were used to calculate diurnally phase-averaged thermal balances. A one-dimensional momentum balance developed for a portion of the lagoon indicates that the diurnal heating pattern and consistent spatial gradients in surface heat fluxes create a baroclinic pressure gradient that is dynamically important in driving the observed circulation. The baroclinic and barotropic pressure gradients make up 90% of the momentum budget in part of the system; thus, when the baroclinic pressure gradient decreases 20% during the day due to changes in temperature gradient, this substantially changes the circulation, with different flow patterns occurring during night and day. Thermal balances computed across the entire lagoon show that the spatial heating patterns and resulting buoyancy-driven circulation are important in maintaining a persistent advective export of heat from the lagoon and for enhancing ocean-lagoon exchange.
Resumo:
Analysis of five-year records of temperatures and currents collected at Moorea reveal strong internal wave activity at predominantly semi-diurnal frequencies impacting reef slopes at depths 30m around the entire island. Temperature changes of 1.5C to 3C are accompanied by surges of upward and onshore flow and vertical shear in onshore currents. Superimposed on annual temperature changes of approximately 3C, internal wave activity is high from Oct-May and markedly lower from Jun-Sep. The offshore pycnocline is broadly distributed with continuous stratification to at least 500m depth, and a subsurface fluorescence maximum above the strong nutricline at approximately 200m. Minimum buoyancy periods range from 4.8 to 6min, with the maximum density gradient occurring at 50 to 60m depth in summer and deepening to approximately 150 to 200m in winter. The bottom slope angle around all of Moorea is super-critical relative to the vertical stratification angle suggesting that energy propagating into shallow water is only a portion of total incident internal wave energy. Vertical gradient Richardson numbers indicate dominance by density stability relative to current shear with relatively limited diapycnal mixing. Coherence and lagged cross-correlation of semi-diurnal temperature variation indicate complex patterns of inter-site arrival of internal waves and no clear coherence or lagged correlation relationships among island sides. Semi-diurnal and high frequency internal wave packets likely arrive on Moorea from a combination of local and distant sources and may have important impacts for nutrient and particle fluxes in deep reef environments. © 2012 American Geophysical Union. All Rights Reserved.
Resumo:
According to the Merriam-Webster dictionary, the definition of dance is “to move your body in a way that goes with the rhythm and style of music that is being played.” As you can see in that definition, these two important ways of expressing human feelings, music and dance, are very closely related. Countless pieces of music have been composed for dance, and are still being composed. It is impossible and useless to count how many kinds of dances exist in the world. Different kinds of dances have been developed according to their purposes, cultures, rhythm and tempo. For this reason, the field of dance-related music necessarily expanded significantly. A great deal of dance music has been written for orchestras, small ensembles, or vocals. Along with them, keyboard music also has a huge repertoire of dance pieces. For example, one of the most famous form in Baroque period was suites. Suites usually include 5 or more dance movements in the same key, such as Minuet, Allemende, Courant, Sarabande, Gigue, Bourree, Gavotte, Passepied, and so on. Nationalistic dances like waltz, polonaise, mazurka, and tarantella, were wonderful sources for composers like Chopin, Brahms, and Tchaikovsky. Dance-based movements were used for Mozart and Beethoven’s piano sonatas, chamber works and concertos. Composers have routinely traveled around the world to collect folk and dance tunes from places they visit. For example, Bartok and Balakirev's pieces that are based on folk dances from where they had traveled became famous and are still thought to be valuable for studying and performing today. For these reasons, it is clear that dance-related music is a very important part of keyboard music. In three dissertation recitals, to expand my performing repertoire and to understand dance-related music deeper, I tried to explore many different styles of dances, and compare interpretations between composers. This program note contains information about each pieces’ composers, related dances, and backgrounds. I hope this will be helpful for a future performer who’s seeking an effective dance based keyboard piece.
Resumo:
To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (±SD) 42 ± 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P < 0.004). Over the interval from the melatonin onset before exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 ± 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 ± 14 min, P < 0.05). Phase shifts in response to evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.
Resumo:
Ground based remote sensing techniques are used to measure volcanic SO2 fluxes in efforts to characterise volcanic activity. As these measurements are made several km from source there is the potential for in-plume chemical transformation of SO2 to sulphate aerosol (conversion rates are dependent on meteorological conditions), complicating interpretation of observed SO2 flux trends. In contrast to anthropogenic plumes, SO2 lifetimes are poorly constrained for tropospheric volcanic plumes, where the few previous loss rate estimates vary widely (from ≪1 to >99% per hour .We report experiments conducted on the boundary layer plume of Masaya volcano, Nicaragua during the dry season. We found that SO2 fluxes showed negligible variation with plume age or diurnal variations in temperature, relative humidity and insolation, providing confirmation that remote SO2 flux measurements (typically of ≈500-2000 s old plumes) are reliable proxies for source emissions for ash free tropospheric plumes not emitted into cloud or fog. Copyright 2004 by the American Geophysical Union.
Resumo:
The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.
Resumo:
Calanus helgolandicus over-winters in the shallow waters (100 m) of the Celtic Sea as copepodite stages V and VI; the minimum temperature in winter is approximately 8.0°C. This over-wintering is not a true hibernation or dormacy, accompanied by a reduced metabolic state with a discontinuation of feeding and development, but more of a lowered activity, involving reduced feeding and development, with predation on available microzooplankton and detritus. Analysis of specimens from the winter population showed that copepodite stages V and VI were actively feeding and still producing and possibly liberating eggs. The absence of late nauplii and young copepodites in the water column until late March indicated that there must be a high mortality of these winter cohorts. The copepodites of the first generation appeared in April–May, the younger stages, copepodites I to III, being distributed deeper in the water column below the euphotic zone and thermocline. This distribution would contribute to amuch slower rate of development. By August the ontogenetic vertical distributions observed in the copepodites were reversed, the younger stages occuring in the warmer surface layers within the euphotic zone. Diurnal migrations were observed in the later copepodites only, the younger stages I to III either remaining deep in spring or shallow in summer. The causal mechanisms which alter the behaviour of the young copepodites remain unexplained. The development of the population of Calanus helgolandicus in 1978, reaching its peak of abundance in August, was typical for the shelf seas around U.K. as observed from Continuous Plankton Recorder data, 1958 to 1977.