910 resultados para Dimension stones
Resumo:
In this chapter I propose a theoretical framework for understanding the role of mediation processes in the inculcation, maintenance, and change of evaluative meaning systems, or axiologies, and how such a perspective can provide a useful and complementary dimension to analysis for SFL and CDA. I argue that an understanding of mediation—the movement of meaning across time and space—is essential for the analysis of meaning. Using two related texts as examples, I show how an understanding of mediation can aid SFL and CDA practitioners in the analysis of social change.
Resumo:
Teaching to an international audience online can be significantly different as compared to a traditional classroom setting. In a traditional classroom setting, the students are usually removed from their own cultural context and required to operate in the lecturer’s context. International students coming to Malaysia to study are implicitly expected to, and often do, become familiar with the Malaysian culture and style of education. The use of educational technologies as a blended strategy in higher education programs offers challenges and opportunities for all students but this may be different for international students who come from varied backgrounds. With an increasingly competitive global demand for higher education, Malaysian institutions strive to be the hub of educational excellence and a preferred option for international students in coping with the challenges of studying abroad in a different culture. This research will evaluate how undergraduate students perceive their online learning experiences in a Malaysian university. The OLES (Online Learning Environment Survey) will be used to explore the international and domestic students’ perception on e-learning and the findings of the first six OLES scales varying from (Computer Usage, Teacher Support, Student Interaction & Collaboration, Personal Relevance, Authentic Learning, and Student Autonomy) will be reported in this research. An in-depth study will be conducted to compare and contrast the challenges of international students with domestic students. Major difficulties encountered and how these students actually cope with e-learning, as well as the strategies and tools used to overcome the challenges will be investigated.
Resumo:
Teaching to an international audience online can be significantly different as compared to a traditional classroom setting. In a traditional classroom setting, the students are usually removed from their own cultural context and required to operate in the lecturer’s context. International students coming to Malaysia to study are implicitly expected to, and often do, become familiar with the Malaysian culture and style of education. The use of educational technologies as a blended strategy in higher education programs offers challenges and opportunities for all students but this may be different for international students who come from varied backgrounds. With an increasingly competitive global demand for higher education, Malaysian institutions strive to be the hub of educational excellence and a preferred option for international students in coping with the challenges of studying abroad in a different culture. This research will evaluate how undergraduate students perceive their online learning experiences in a Malaysian institute. The OLES (Online Learning Environment Survey) will be used to explore the international and domestic students’ perception on e-learning and the findings of the last six OLES scales varying from (Equity, Enjoyment, Asychronocity, Evaluation & Assessments, Online Learning Tools, and Interface Design) will be reported in this research. An in-depth study will be conducted to compare and contrast the challenges of international students with domestic students. Major difficulties encountered and how these students actually cope with e-learning, as well as the strategies and tools used to overcome the challenges will be investigated.
Resumo:
Examined whether discrete working memory deficits underlie positive, negative and disorganised symptoms of schizophrenia. 52 outpatients (mean age 37.5 yrs) with schizophrenia were studied using items drawn from the Positive and Negative Syndrome Scale (PANSS). Linear regression and correlational analyses were conducted to examine whether symptom dimension scores were related to performance on several tests of working memory function. Severity of negative symptoms correlated with reduced production of words during a verbal fluency task, impaired ability to hold letter and number sequences on-line and manipulate them simultaneously, reduced performance during a dual task, and compromised visuospatial working memory under distraction-free conditions. Severity of disorganisation symptoms correlated with impaired visuospatial working memory under conditions of distraction, failure of inhibition during a verbal fluency task, perseverative responding on a test of set-shifting ability, and impaired ability to judge the veracity of simple declarative statements. The present study provides evidence that the positive, negative and disorganised symptom dimensions of the PANSS constitute independent clusters, associated with unique patterns of working memory impairment.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Transportation disadvantage has been recognised to be the key source of social exclusion. Therefore an appropriate process is required to investigate and seek to resolve this problem. Currently, determination of Transportation Disadvantage is postulate based on income, poverty and mobility level. Transportation disadvantage may best regard be based on accessibility perspectives as they represent inability of the individual to access desired activities. This paper attempts to justify a process in determining transportation disadvantage by incorporating accessibility and social transporation conflict as the essence of a framework. The framework embeds space time organisation within the dimension of accessibility to identify a rigorous definition of transportation disadvantage. In developing the framework, the definition, dimension, component and measure of accessibility were scrutinised. The findings suggest the definition and dimension are the significant approach of research to evaluate travel experience of the disadvantaged. Concurrently, location accessibility measures will be incorprated to strenghten the determination of accessibility level. Literature review in social exclusion and mobility-related exclusion identified the dimension and source of transportation disadvantage. It was revealed that the appropriate approach to justify trasnportation disadvantaged is to incorporate space-time organisation within the studied components. The suggested framework is an inter-related process consisting of component of accessibility; individual, networking (transport system) and activities (destination). The integration and correlation among the components shall determine the level of transportation disadvantage. Prior findings are used to retrieve the spatial distribution of transportation disadvantaged and appropriate policies are developed to resolve the problems.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.
Resumo:
Multi-storey buildings are highly vulnerable to terrorist bombing attacks in various parts of the world. Large numbers of casualties and extensive property damage result not only from blast overpressure, but also from the failing of structural components. Understanding the blast response and damage consequences of reinforced concrete (RC) building frames is therefore important when assessing multi-storey buildings designed to resist normal gravity loads. However, limited research has been conducted to identify the blast response and damage of RC frames in order to assess the vulnerability of entire buildings. This paper discusses the blast response and evaluation of damage of three-dimension (3D) RC rigid frame under potential blast loads scenarios. The explicit finite element modelling and analysis under time history blast pressure loads were carried out by LS DYNA code. Complete 3D RC frame was developed with relevant reinforcement details and material models with strain rate effect. Idealised triangular blast pressures calculated from standard manuals are applied on the front face of the model in the present investigation. The analysis results show the blast response, as displacements and material yielding of the structural elements in the RC frame. The level of damage is evaluated and classified according to the selected load case scenarios. Residual load carrying capacities are evaluated and level of damage was presented by the defined damage indices. This information is necessary to determine the vulnerability of existing multi-storey buildings with RC frames and to identify the level of damage under typical external explosion environments. It also provides basic guidance to the design of new buildings to resist blast loads.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
Purpose: To evaluate the psychometric properties of a Chinese version of the Diabetes Coping Measure (DCM-C) scale.----- Methods: A self-administered questionnaire was completed by 205 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Confirmatory factor analysis, criterion validity, and internal consistency reliability were conducted to evaluate the psychometric properties of the DCM-C.----- Findings: Confirmatory factor analysis confirmed a four-factor structure (χ2 /df ratio=1.351, GFI=.904, CFI=.902, RMSEA=.041). The DCM-C was significantly associated with HbA1c and diabetes self-care behaviors. Internal consistency reliability of the total DCM-C scale was .74. Cronbach’s alpha coefficients for each subscale of the DCM-C ranged from .37 (tackling spirit) to .66 (diabetes integration).----- Conclusions: The DCM-C demonstrated satisfactory reliability and validity to determine the use of diabetes coping strategies. The tackling spirit dimension needs further refinement when applies this scale to Chinese populations with diabetes.----- Clinical Relevance: Healthcare providers who deal with Chinese people with diabetes can use the DCM-C to implement an early determination of diabetes coping strategies.
Resumo:
This project aims to develop a methodology for designing and conducting a systems engineering analysis to build and fly continuously, day and night, propelled uniquely by solar energy for one week with a 0.25Kg payload consuming 0.5 watt without fuel or pollution. An airplane able to fly autonomously for many days could find many applications. Including coastal or border surveillance, atmospherical and weather research and prediction, environmental, forestry, agricultural, and oceanic monitoring, imaging for the media and real-estate industries, etc. Additional advantages of solar airplanes are their low cost and the simplicity with which they can be launched. For example, in the case of potential forest fire risks during a warm and dry period, swarms of solar airplanes, easily launched with the hand, could efficiently monitor a large surface, reporting rapidly any fire starts. This would allow a fast intervention and thus reduce the cost of such disaster, in terms of human and material losses. At higher dimension, solar HALE platforms are expected to play a major role as communication relays and could replace advantageously satellites in a near future.