940 resultados para Digestive enzymes.
Resumo:
Objective: To examine the relation between different types of alcoholic drinks and upper digestive tract cancers (oropharyngeal and oesophageal).
Resumo:
Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23°C and then shifted to 5°C. We compared the leaves shifted to 5°C for 10 d and the new leaves developed at 5°C with the control leaves on plants that had been left at 23°C. Leaf development at 5°C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23°C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5°C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5°C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield.
Resumo:
Betaine lipids are ether-linked, nonphosphorous glycerolipids that resemble the more commonly known phosphatidylcholine in overall structure. Betaine lipids are abundant in many eukaryotes such as nonseed plants, algae, fungi, and amoeba. Some of these organisms are entirely devoid of phosphatidylcholine and, instead, contain a betaine lipid such as diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine. Recently, this lipid also was discovered in the photosynthetic purple bacterium Rhodobacter sphaeroides where it seems to replace phosphatidylcholine under phosphate-limiting growth conditions. This discovery provided the opportunity to study the biosynthesis of betaine lipids in a bacterial model system. Mutants of R. sphaeroides deficient in the biosynthesis of the betaine lipid were isolated, and two genes essential for this process, btaA and btaB, were identified. It is proposed that btaA encodes an S-adenosylmethionine:diacylglycerol 3-amino-3-carboxypropyl transferase and btaB an S-adenosylmethionine-dependent N-methyltransferase. Both enzymatic activities can account for all reactions of betaine lipid head group biosynthesis. Because the equivalent reactions have been proposed for different eukaryotes, it seems likely that orthologs of btaA/btaB may be present in other betaine lipid-containing organisms.
Resumo:
The structure and function of Erwinia chrysanthemi pectate lysase C, a plant virulence factor, is reviewed to illustrate one mechanism of pathogenesis at the molecular level. Current investigative topics are discussed in this paper.
Resumo:
Today’s knowledge is based on yesterday’s research, which, for me, started some 60 years ago. In the introduction to this colloquium, the past history of proteolytic enzymes is briefly reviewed against the background of simultaneously developing concepts and methodologies in protein chemistry. This history is followed by a sketch of more recent developments of the role of proteolytic enzymes in physiological regulation and an outlook of future trends apparent from current research.
Resumo:
Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.
Resumo:
The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.
Resumo:
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.
Resumo:
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.
Resumo:
The enzyme 4-coumarate:coenzyme A ligase (4CL) is important in providing activated thioester substrates for phenylpropanoid natural product biosynthesis. We tested different hybrid poplar (Populus trichocarpa × Populus deltoides) tissues for the presence of 4CL isoforms by fast-protein liquid chromatography and detected a minimum of three 4CL isoforms. These isoforms shared similar hydroxycinnamic acid substrate-utilization profiles and were all inactive against sinapic acid, but instability of the native forms precluded extensive further analysis. 4CL cDNA clones were isolated and grouped into two major classes, the predicted amino acid sequences of which were 86% identical. Genomic Southern blots showed that the cDNA classes represent two poplar 4CL genes, and northern blots provided evidence for their differential expression. Recombinant enzymes corresponding to the two genes were expressed using a baculovirus system. The two recombinant proteins had substrate utilization profiles similar to each other and to the native poplar 4CL isoforms (4-coumaric acid > ferulic acid > caffeic acid; there was no conversion of sinapic acid), except that both had relatively high activity toward cinnamic acid. These results are discussed with respect to the role of 4CL in the partitioning of carbon in phenylpropanoid metabolism.
Resumo:
Many marine algae produce 3-dimethylsulfoniopropionate (DMSP), a potent osmoprotective compound whose degradation product dimethylsulfide plays a central role in the biogeochemical S cycle. Algae are known to synthesize DMSP via the four-step pathway, l-Met → 4-methylthio-2-oxobutyrate → 4-methylthio-2-hydroxybutyrate → 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) → DMSP. Substrate-specific enzymes catalyzing the first three steps in this pathway were detected and partially characterized in cell-free extracts of the chlorophyte alga Enteromorpha intestinalis. The first is a 2-oxoglutarate-dependent aminotransferase, the second an NADPH-linked reductase, and the third an S-adenosylmethionine-dependent methyltransferase. Sensitive radiometric assays were developed for these enzymes, and used to show that their activities are high enough to account for the estimated in vivo flux from Met to DMSP. The activities of these enzymes in other DMSP-rich chlorophyte algae were at least as high as those in E. intestinalis, but were ≥20-fold lower in algae without DMSP. The reductase and methyltransferase were specific for the d-enantiomer of 4-methylthio-2-hydroxybutyrate in vitro, and both the methyltransferase step and the step(s) converting DMSHB to DMSP were shown to prefer d-enantiomers in vivo. The intermediate DMSHB was shown to act as an osmoprotectant, which indicates that the first three steps of the DMSP synthesis pathway may be sufficient to confer osmotolerance.