873 resultados para Design of Experiments and Sample Surveys
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.
Resumo:
A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.
Resumo:
This research investigated seepage under hydraulic structures considering flow through the banks of the canal. A computer model, utilizing the finite element method, was used. Different configurations of sheetpile driven under the floor of the structure were studied. Results showed that the transverse extension of sheetpile, driven at the middle of the floor, into the banks of the canal had very little effect on seepage losses, uplift force, and on the exit gradient at the downstream end of the floor. Likewise, confining the downstream floor with sheetpile from three sides was not found effective. When the downstream floor was confined with sheetpile from all sides, this has significantly reduced the exit gradient. Furthermore, all the different configurations of the sheetpile had insignificant effect on seepage losses. The most effective configuration of the sheetpile was the case when two rows of sheetpiles were driven at the middle and at the downstream end of the floor, with the latter sheetpile extended few meters into the banks of the canal. This case has significantly reduced the exit gradient and caused only slight increase in the uplift force when compared to other sheetpile configurations. The present study suggests that two-dimensional analysis of seepage problems underestimates the exit gradient and uplift force on hydraulic structures.
Resumo:
Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds; and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.
Resumo:
The work presented in this paper takes advantage of newly developed instrumentation suitable for in process monitoring of an industrial stretch blow molding machine. The instrumentation provides blowing pressure and stretch rod force histories along with the kinematics of polymer contact with the mould wall. A Design of Experiments pattern was used to qualitatively relate machine inputs with these process parameters and the thickness distribution of stretch blow molded PET (polyethylene terephtalate) bottles. Material slippage at the mold wall and thickness distribution is also discussed in relation to machine inputs. The key process indicators defined have great potential for use in a closed loop process control system and for validation of process simulations.
Resumo:
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.
Resumo:
Constructed wetland systems (CWS) have been used as a low cost bio-filtration system to treat farm wastewater. While studies have shown that CWS are efficient in removing organic compounds and pathogens, there is limited data on the presence of hormones in this type of treatment system. The objective of this study was to evaluate the ability of the CWS to reduce estrogenic and androgenic hormone concentration in dairy wastewater. This was achieved through a year long study on dairy wastewater samples obtained froma surface flow CWS. Analysis of hormonal levels was performed using a solid phase extraction (SPE) sample clean-up method, combined with reporter gene assays (RGAs) which incorporate relevant receptors capable of measuring total estrogenic or androgenic concentrations as low as 0.24 ng L1 and 6.9 ng L1 respectively. Monthly analysis showed a mean removal efficiency for estrogens of 95.2%, corresponding to an average residual concentration of 3.2 ng L1 17b-estradiol equivalent (EEQ), below the proposed lowest observable effect concentration (LOEC) of 10 ng L1. However, for one month a peak EEQ concentration of 115 ng L1 was only reduced to 18.8 ng L1. The mean androgenic activity peaked at 360 ng L1 and a removal efficiency of 92.1% left an average residual concentration of 32.3 ng L1 testosterone equivalent (TEQ). The results obtained demonstrate that this type of CWS is an efficient system for the treatment of hormones in dairy wastewater. However, additional design improvements may be required to further enhance removal efficiency of peak hormone concentrations.