791 resultados para Deployment of HydroMet Sensor Networks
Resumo:
This thesis comprises seven peer-reviewed articles and examines systems and applications suitable for increasing Future Force Warrior performance, minimizing collateral damage, improving situational awareness and Common Operational Picture. Based on a literature study, missing functionalities of Future Force Warrior were identified and new ideas, concepts and solutions were created as part of early stages of Systems of Systems creation. These introduced ideas have not yet been implemented or tested in combat and for this reason benefit analyses are excluded. The main results of this thesis include the following: A new networking concept, Wireless Polling Sensor Network, which is a swarm of a few Unmanned Aerial Vehicles forming an ad-hoc network and polling a large number of fixed sensor nodes. The system is more robust in a military environment than traditional Wireless Sensor Networks. A Business Process approach to Service Oriented Architecture in a tactical setting is a concept for scheduling and sharing limited resources. New components to military Service Oriented Architecture have been introduced in the thesis. Other results of the thesis include an investigation of the use of Free Space Optics in tactical communications, a proposal for tracking neutral forces, a system for upgrading simple collaboration tools for command, control and collaboration purposes, a three-level hierarchy of Future Force Warrior, and methods for reducing incidents of fratricide.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
The aim of the present thesis was to explore possible promotional actions to support the emergence of eco-industrial business networks in Finland. The main objectives were to investigate what kind of factors affect in the development of eco-industrial networks and further make suggestions in what kinds of actions this could be supported. In addition, since the active facilitation was discovered as one potential promoting activity, further investigation about facilitation process in Finnish context was conducted and also main characteristics of nationwide facilitation programme were identified. This thesis contains literature review of network orchestration and eco-industrial networks. The latter consists of green supply chain management and industrial symbiosis, although the main focus of the study leans on the concept of industrial symbiosis. The empirical data of the study was obtained from semi-structured expert interviews. These interviews were analyzed using qualitative content analysis. The study identified four main promotional activities for eco-industrial networks: 1) building awareness, 2) incentives, 3) dismantling of legislative barriers and 4) active facilitation. In addition, a framework for facilitation activities in Finnish context was built and main characteristics of nationwide facilitation programme were identified.
Resumo:
In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.
Resumo:
Digital business ecosystems (DBE) are becoming an increasingly popular concept for modelling and building distributed systems in heterogeneous, decentralized and open environments. Information- and communication technology (ICT) enabled business solutions have created an opportunity for automated business relations and transactions. The deployment of ICT in business-to-business (B2B) integration seeks to improve competitiveness by establishing real-time information and offering better information visibility to business ecosystem actors. The products, components and raw material flows in supply chains are traditionally studied in logistics research. In this study, we expand the research to cover the processes parallel to the service and information flows as information logistics integration. In this thesis, we show how better integration and automation of information flows enhance the speed of processes and, thus, provide cost savings and other benefits for organizations. Investments in DBE are intended to add value through business automation and are key decisions in building up information logistics integration. Business solutions that build on automation are important sources of value in networks that promote and support business relations and transactions. Value is created through improved productivity and effectiveness when new, more efficient collaboration methods are discovered and integrated into DBE. Organizations, business networks and collaborations, even with competitors, form DBE in which information logistics integration has a significant role as a value driver. However, traditional economic and computing theories do not focus on digital business ecosystems as a separate form of organization, and they do not provide conceptual frameworks that can be used to explore digital business ecosystems as value drivers—combined internal management and external coordination mechanisms for information logistics integration are not the current practice of a company’s strategic process. In this thesis, we have developed and tested a framework to explore the digital business ecosystems developed and a coordination model for digital business ecosystem integration; moreover, we have analysed the value of information logistics integration. The research is based on a case study and on mixed methods, in which we use the Delphi method and Internetbased tools for idea generation and development. We conducted many interviews with key experts, which we recoded, transcribed and coded to find success factors. Qualitative analyses were based on a Monte Carlo simulation, which sought cost savings, and Real Option Valuation, which sought an optimal investment program for the ecosystem level. This study provides valuable knowledge regarding information logistics integration by utilizing a suitable business process information model for collaboration. An information model is based on the business process scenarios and on detailed transactions for the mapping and automation of product, service and information flows. The research results illustrate the current cap of understanding information logistics integration in a digital business ecosystem. Based on success factors, we were able to illustrate how specific coordination mechanisms related to network management and orchestration could be designed. We also pointed out the potential of information logistics integration in value creation. With the help of global standardization experts, we utilized the design of the core information model for B2B integration. We built this quantitative analysis by using the Monte Carlo-based simulation model and the Real Option Value model. This research covers relevant new research disciplines, such as information logistics integration and digital business ecosystems, in which the current literature needs to be improved. This research was executed by high-level experts and managers responsible for global business network B2B integration. However, the research was dominated by one industry domain, and therefore a more comprehensive exploration should be undertaken to cover a larger population of business sectors. Based on this research, the new quantitative survey could provide new possibilities to examine information logistics integration in digital business ecosystems. The value activities indicate that further studies should continue, especially with regard to the collaboration issues on integration, focusing on a user-centric approach. We should better understand how real-time information supports customer value creation by imbedding the information into the lifetime value of products and services. The aim of this research was to build competitive advantage through B2B integration to support a real-time economy. For practitioners, this research created several tools and concepts to improve value activities, information logistics integration design and management and orchestration models. Based on the results, the companies were able to better understand the formulation of the digital business ecosystem and the importance of joint efforts in collaboration. However, the challenge of incorporating this new knowledge into strategic processes in a multi-stakeholder environment remains. This challenge has been noted, and new projects have been established in pursuit of a real-time economy.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.
Resumo:
In this paper, a comparison study among three neuralnetwork algorithms for the synthesis of array patterns is presented. The neural networks are used to estimate the array elements' excitations for an arbitrary pattern. The architecture of the neural networks is discussed and simulation results are presented. Two new neural networks, based on radial basis functions (RBFs) and wavelet neural networks (WNNs), are introduced. The proposed networks offer a more efficient synthesis procedure, as compared to other available techniques
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
In this paper, we define a new scheme to develop and evaluate protection strategies for building reliable GMPLS networks. This is based on what we have called the network protection degree (NPD). The NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability, and an a posteriori evaluation, the failure impact degree (FID), which determines the impact on the network in case of failure, in terms of packet loss and recovery time. Having mathematical formulated these components, experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms in order to offer a certain degree of protection