926 resultados para DEPENDENT ATPASE ACTIVITY
Resumo:
Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.
Resumo:
Previous work has demonstrated that the alkyl esters of p-hydroxybenzoic acid (parabens) possess oestrogenic activity, which increases with length of alkyl chain from methylparaben to n-butylparaben and with branching in the alkyl chain from n-butylparaben to isobutylparaben. This study reports on the oestrogenic activity of benzylparaben in a variety of assays in vitro and in vivo. Benzylparaben was able to displace [H-3]oestradiol from cytosolic oestrogen receptor (ER) of MCF7 human breast cancer cells by 22% at 1000-fold molar excess, by 40% at 10000-fold molar excess, by 57% at 100000-fold molar excess and by 100% at 1000000-fold molar excess. It was able to increase expression of a stably transfected oestrogen responsive reporter gene (ERE-CAT) in MCF7 cells after 24 h at 10(-5)M/10(-4)M and after 7 days at 10(-6)M/10(-5)M/10(-4)M. Proliferation of MCF7 cells could be increased by 10(-6)M/10(-5)M benzylparaben and this could be inhibited by 10(-7)M pure anti-oestrogen ICI 182,780, indicating that growth effects were ER mediated. Further evidence for ER-mediation was provided from the ability of benzylparaben to increase the growth of a second oestrogen-dependent human breast cancer cell line ZR-75-1, but not the oestrogen-insensitive NIDA-MB-231 cell line. When tested in the presence of 10(-10)M 17beta-oestradiol, benzylparaben gave no antagonist response on the growth of either MCF7 or ZR-75-1 cells. Finally, benzylparaben could increase uterine weight in the immature mouse following topical application of three daily doses of 33 mg to dorsal skin. These results demonstrate that the oestrogenicity of methylparaben can be increased by the addition of an aryl group as well as by lengthening or branching the alkyl grouping. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.
Resumo:
At sites of chronic inflammation, such as in the inflamed rheumatoid joint, activated neutrophils release hydrogen peroxide (H2O2) and the enzyme myeloperoxidase to catalyse the formation of hypochlorous acid (HOCl). 3-chlorotyrosine, a marker of HOCl in vivo, has been observed in synovial fluid proteins from rheumatoid arthritis patients. However the mechanisms of HOCl-induced cytotxicity are unknown. We determined the molecular mechanisms by which HOCl induced cell death in human mesenchymal progenitor cells (MPCs) differentiated into a chondrocytic phenotype as a model of human cartilage cells and show that HOCl induced rapid Bax conformational change, mitochondrial permeability and release of intra-mitochondrial pro-apoptotic proteins which resulted in nuclear translocation of AIF and EndoG. siRNA-mediated knockdown of Bax substantially prevented mitochondrial permeability, release of intra-mitochondrial pro-apoptotic proteins. Cell death was inhibited by siRNA-mediated knockdown of Bax, AIF or EndoG. Although we observed several biochemical markers of apoptosis, caspase activation was not detected either by western blotting, fluorescence activity assays or by using caspase inhibitors to inhibit cell death. This was further supported by findings that (1) in vitro exposure of recombinant human caspases to HOCl caused significant inhibition of caspase activity and (2) the addition of HOCl to staurosporine-treated MPCs inhibited the activity of cellular caspases. Our results show for the first time that HOCl induced Bax-dependent mitochondrial permeability which led to cell death without caspase activity by processes involving AIF/EndoG-dependent pathways. Our study provides a novel insight into the potential mechanisms of cell death in the inflamed human joint. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.
Resumo:
The effects of a new titanocene compound with an ansa ligand in the cyclopentadienyl rings, the 1,2-di(cyclopentadienyl)-1,2-di(p-NNdimethylaminophenyl)-ethanediyl] titanium dichloride (TITANOCENE X), on the growth and differentiation of granulocyte-macrophage progenitor cells [colony-forming unit-granulocyte-macrophage (CFU-GM)] and Natural killer (NK) cell activity in Ehrlich's ascites tumour (EAT)-bearing mice were studied. Myelosuppression concomitant with increased numbers of spleen CFU-GM was observed in tumour-bearing mice. Treatment of these animals with TITANOCENE X (2.5-50mg/kg/day) produced an increase in myelopoicsis, in a dose-dependent manner, and reduced spleen colony formation. In addition, the treatment of EAT-bearing mice with 3 doses of 20 or 50 mg/kg TITANOCENE X restored to normal values the reduced Natural killer cell function observed during tumour growth. In parallel, TITANOCENE X prolonged, in a dose-dependent manner, the survival of mice inoculated with Ehrlich's ascites tumour. The highest dose of 50 mg/kg prolonged in 50% the survival time of EAT-bearing mice, compared to non-treated tumour-bearing controls. In comparison with previous results from our laboratory addressing the effects of titanocenes on haematopoiesis, we observed with TITANOCENE X a similar effective profile as for bis(cyclopentadienyl) dithiocyanate titanium(IV), being both less effective than di(cyclopentadienyl) dichloro titanium(IV), since the latter not only prolonged, but also increased the rate of survival. These differences in efficacy may be due to the nature of the ansa-cyclopentadienyl ligand used in TITANOCENE X, since the C, bridge between the two cyclopentadienyl groups will increase the hydrolytic stability by an organometallic chelate effect. Also, the introduction of two dimethylamino substituents increases the water solubility of TITANOCENE X when compared to titanocene dichloride itself (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The benzyl-substituted unbridged titanocene bis-[(p-methoxybenzyl)cyclopentadienyl] titanium(IV) dichloride (Titanocene Y) was tested in vitro against human renal cancer cells (Caki-1), in which it showed an IC50 value of 36 x 10(-6) mol/l. Titanocene Y was then given in vivo in doses of 10, 20, 30, 40 and 50 mg/kg on 5 consecutive days to Caki-1-bearing mice, and it showed concentration-dependent and statistically significant tumor growth reduction with respect to a solvent-treated control cohort. The maximum tolerable dose of Titanocene Y was determined to be 40 mg/kg and it showed significantly better tumor volume growth reduction than cisplatin given at a dose of 2 mg/kg. This superior activity of Titanocene Y with respect to cisplatin will hopefully lead to clinical tests against metastatic renal cell cancer in the near future.
Resumo:
Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 microM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect on AChE activity but a strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.
Resumo:
The molecular mechanisms responsible for the alterations in proliferative capacity of cardiac myocytes during development remain unknown; however, cell cycle dependent molecules may be involved. We have determined the expression of cyclins A, D1–3and E, and cyclin-dependent kinases (CDKs) 2, 4, 5 and 6 and cdc2 in freshly isolated rat cardiac myocytes from fetal (18 days gestation), neonatal (2 days post-natal) and adult animals by immunoblotting. Our results show a dramatic decrease in expression of these proteins during normal cardiac development, such that levels are highest in fetal myocytes but are significantly down-regulated in adult cells (P<0.05, in each case). We also have determined thein vitrokinase activities of cdc2, CDK2, CDK4, CDK5 and CDK6 immunocomplexes in fetal, neonatal and adult myocytes. There was a consistent and significant loss of cdc2, CDK2, CDK4 and CDK6 kinase activities in adult cardiac cell lysates (5.3-, 10.6-, 1.5- and 1.9-fold decreases, respectively) when compared to neonatal samples (P<0.05); CDK5 activity showed a similar trend but failed to reach significance. In conclusion, our results show that the expression and activities of various positive regulators of the cell cycle are down-regulated significantly during development of the cardiac myocyte, concomitant with the loss of proliferative capacity in adult myocytes. Down-regulation of these proteins may be pivotal in the withdrawal of the cardiac myocyte from the cell cycle.
Resumo:
The aim was to determine in 32 healthy young men from northern and southern Europe whether differences in the secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) might explain these findings through the actions of these hormones on lipoprotein lipase. In a randomized, single-blind, crossover study the effects of 2 test meals of identical macronutrient composition but different saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) contents were investigated on postprandial GIP, insulin, the ratio of incremental triacylglycerol to apolipoprotein B-48 (a marker of chylomicron size), and the activity of postheparin lipases. Fasting and postprandial GIP concentrations and postheparin hepatic lipase (HL) activities were higher in the southern Europeans (P<0.001 and P<0.02, respectively). Lipoprotein lipase activity after the SFA-rich meal was higher in the northern Europeans (P<0.01). HL activity 9 h after the SFA-rich meal and the area under the curve (AUC) for the postprandial insulin response correlated with the AUC for the postprandial GIP response (r=0.44 (P<0.04) and r=0.46 (P<0.05), respectively). There were no significant differences in chylomicron size between the 2 groups for either meal, but when the groups were combined there was a difference in chylomicron size between the SFA- and MUFA-rich meals (P<0.05), which could be due to the formation of larger chylomicrons after the MUFA-rich meal. The significantly higher GIP and insulin responses and HL activities in southern Europeans may provide an explanation for a previous report of attenuated postprandial triacylglycerol and apolipoprotein B-48 responses in them.
Resumo:
Drugs which upregulate astrocyte glutamate transport may be useful neuroprotective compounds by preventing excitotoxicity. We set up a new system to identify potential neuroprotective drugs which act through GLT-1. Primary mouse striatal astrocytes grown in the presence of the growth-factor supplement G5 express high levels of the functional glutamate transporter, GLT-1 (also known as EAAT2) as assessed by Western blotting and (3)H-glutamate uptake assay, and levels decline following growth factor withdrawal. The GLT-1 transcriptional enhancer dexamethasone (0.1 or 1muM) was able to prevent loss of GLT-1 levels and activity following growth factor withdrawal. In contrast, ceftriaxone, a compound previously reported to enhance GLT-1 expression, failed to regulate GLT-1 in this system. The neuroprotective compound riluzole (100muM) upregulated GLT-1 levels and activity, through a mechanism that was not dependent on blockade of voltage-sensitive ion channels, since zonasimide (1mM) did not regulate GLT-1. Finally, CDP-choline (10muM-1mM), a compound which promotes association of GLT-1/EAAT2 with lipid rafts was unable to prevent GLT-1 loss under these conditions. This observation extends the known pharmacological actions of riluzole, and suggests that this compound may exert its neuroprotective effects through an astrocyte-dependent mechanism.
Resumo:
Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.
Resumo:
We recently found block of NO synthase in rat middle cerebral artery caused spasm, associated with depolarizing oscillations in membrane potential (Em) similar in form but faster in frequency (circa 1 Hz) to vasomotion. T-type voltage-gated Ca2+ channels contribute to cerebral myogenic tone and vasomotion, so we investigated the significance of T-type and other ion channels for membrane potential oscillations underlying arterial spasm. Smooth muscle cell membrane potential (Em) and tension were measured simultaneously in rat middle cerebral artery. NO synthase blockade caused temporally coupled depolarizing oscillations in cerebrovascular Em with associated vasoconstriction. Both events were accentuated by block of smooth muscle BKCa. Block of T-type channels or inhibition of Na+/K+-ATPase abolished the oscillations in Em and reduced vasoconstriction. Oscillations in Em were either attenuated or accentuated by reducing [Ca2+]o or block of KV, respectively. TRAM-34 attenuated oscillations in both Em and tone, apparently independent of effects against KCa3.1. Thus, rapid depolarizing oscillations in Em and tone observed after endothelial function has been disrupted reflect input from T-type calcium channels in addition to L-type channels, while other depolarizing currents appear to be unimportant. These data suggest that combined block of T and L-type channels may represent an effective approach to reverse cerebral vasospasm.
Resumo:
Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.