916 resultados para DECREASED EXPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results: A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite various approaches, the production of biodegradable plastics such as polyhydroxybutyrate (PHB) in transgenic plants has met with limited success due largely to low expression levels. Even in the few instances where high levels of protein expression have been reported, the transgenic plants have been stunted indicating PHB is phytotoxic (Poirier 2002). This PhD describes the application of a novel virus-based gene expression technology, termed InPAct („In Plant Activation.), for the production of PHB in tobacco and sugarcane. InPAct is based on the rolling circle replication mechanism by which circular ssDNA viruses replicate and provides a system for controlled, high-level gene expression. Based on these features, InPAct was thought to represent an ideal system to enable the controlled, high-level expression of the three phb genes (phbA, phbB and phbC) required for PHB production in sugarcane at a preferred stage of plant growth. A Tobacco yellow dwarf virus (TbYDV)-based InPAct-phbA vector, as well as linear vectors constitutively expressing phbB and phbC were constructed and different combinations were used to transform tobacco leaf discs. A total of four, eight, three and three phenotypically normal tobacco lines were generated from discs transformed with InPAct-phbA, InPAct-phbA + p1300-TaBV P-phbB/phbC- 35S T, p1300-35S P-phbA-NOS T + p1300-TaBV P-phbB/phbC-35S T and InPAct-GUS, respectively. To determine whether the InPAct cassette could be activated in the presence of the TbYDV Rep, leaf samples from the eight InPActphbA + p1300-TaBV P-phbB/phbC-35S T plants were agroinfiltrated with p1300- TbYDV-Rep/RepA. Three days later, successful activation was indicated by the detection of episomes using both PCR and Southern analysis. Leaf discs from the eight InPAct-phbA + p1300-TaBV P-phbB/phbC-35S T transgenic plant lines were agroinfiltrated with p1300-TbYDV-Rep/RepA and leaf tissue was collected ten days post-infiltration and examined for the presence of PHB granules. Confocal microscopy and TEM revealed the presence of typical PHB granules in five of the eight lines, thus demonstrating the functionality of InPActbased PHB production in tobacco. However, analysis of leaf extracts by HPLC failed to detect the presence of PHB suggesting only very low level expression levels. Subsequent molecular analysis of three lines revealed low levels of correctly processed mRNA from the catalase intron contained within the InPAct cassette and also the presence of cryptic splice sites within the intron. In an attempt to increase expression levels, new InPAct-phb cassettes were generated in which the castorbean catalase intron was replaced with a synthetic intron (syntron). Further, in an attempt to both increase and better control Rep/RepA-mediated activation of InPAct cassettes, Rep/RepA expression was placed under the control of a stably integrated alc switch. Leaf discs from a transgenic tobacco line (Alc ML) containing 35S P-AlcR-AlcA P-Rep/RepA were supertransformed with InPAct-phbAsyn or InPAct-GUSsyn using Agrobacterium and three plants (lines) were regenerated for each construct. Analysis of the RNA processing of the InPAct-phbAsyn cassette revealed highly efficient and correct splicing of the syntron, thus supporting its inclusion within the InPAct system. To determine the efficiency of the alc switch to activate InPAct, leaf material from the three Alc ML + InPAct-phbAsyn lines was either agroinfiltrated with 35S P-Rep/RepA or treated with ethanol. Unexpectedly, episomes were detected not only in the infiltrated and ethanol treated samples, but also in non-treated samples. Subsequent analysis of transgenic Alc ML + InPAct-GUS lines, confirmed that the alc switch was leaky in tissue culture. Although this was shown to be reversible once plants were removed from the tissue culture environment, it made the regeneration of Alc ML + InPAct-phbsyn plant lines extremely difficult, due to unintentional Rep expression and therefore high levels of phb expression and phytotoxic PHB production. Two Alc ML + InPAct-phbAsyn + p1300-TaBV P-phbB/phbC-35S T transgenic lines were able to be regenerated, and these were acclimatised, alcohol-treated and analysed. Although episome formation was detected as late as 21 days post activation, no PHB was detected in the leaves of any plants using either microscopy or HPLC, suggesting the presence of a corrupt InPAct-phbA cassette in both lines. The final component of this thesis involved the application of both the alc switch and the InPAct systems to sugarcane in an attempt to produce PHB. Initial experiments using transgenic Alc ML + InPAct-GUS lines indicated that the alc system was not functional in sugarcane under the conditions tested. The functionality of the InPAct system, independent of the alc gene switch, was subsequently examined by bombarding the 35S Rep/RepA cassette into leaf and immature leaf whorl cells derived from InPAct-GUS transgenic sugarcane plants. No GUS expression was observed in leaf tissue, whereas weak and irregular GUS expression was observed in immature leaf whorl tissue derived from two InPAct- GUS lines and two InPAct-GUS + 35S P-AlcR-AlcA P-GUS lines. The most plausible reason to explain the inconsistent and low levels of GUS expression in leaf whorls is a combination of low numbers of sugarcane cells in the DNA replication-conducive S-phase and the irregular and random nature of sugarcane cells bombarded with Rep/RepA. This study details the first report to develop a TbYDV-based InPAct system under control of the alc switch to produce PHB in tobacco and sugarcane. Despite the inability to detect quantifiable levels of PHB levels in either tobacco or sugarcane, the findings of this study should nevertheless assist in the further development of both the InPAct system and the alc system, particularly for sugarcane and ultimately lead to an ethanol-inducible InPAct gene expression system for the production of bioplastics and other proteins of commercial value in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In automatic facial expression recognition, an increasing number of techniques had been proposed for in the literature that exploits the temporal nature of facial expressions. As all facial expressions are known to evolve over time, it is crucially important for a classifier to be capable of modelling their dynamics. We establish that the method of sparse representation (SR) classifiers proves to be a suitable candidate for this purpose, and subsequently propose a framework for expression dynamics to be efficiently incorporated into its current formulation. We additionally show that for the SR method to be applied effectively, then a certain threshold on image dimensionality must be enforced (unlike in facial recognition problems). Thirdly, we determined that recognition rates may be significantly influenced by the size of the projection matrix \Phi. To demonstrate these, a battery of experiments had been conducted on the CK+ dataset for the recognition of the seven prototypic expressions - anger, contempt, disgust, fear, happiness, sadness and surprise - and comparisons have been made between the proposed temporal-SR against the static-SR framework and state-of-the-art support vector machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: A number of bone filling materials containing calcium (Ca++) and phosphate (P) ions have been used in the repair of periodontal bone defects; however, the effect that local release of Ca++ and P ions have on biological reactions is not fully understood. In this study, we investigated the effects of various levels of Ca++ and P ions on the proliferation, osteogenic differentiation, and mineralization of human periodontal ligament cells (hPDLCs). Materials and Methods: hPDLCs were obtained using an explant culture method. Defined concentrations and ratios of ionic Ca++ to inorganic P were added to standard culture and osteogenic induction media. The ability of hPDLCs to proliferate in these growth media was assayed using the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated by FITC-Annexin V/PI double staining method. Osteogenic differentiation and mineralization were investigated by morphological observations, alkaline phosphatase (ALP) activity, and Alizarin red S/von Kossa staining. The mRNA expression of osteogenic related markers was analyzed using a reverse transcriptase polymerase chain reaction (RT-PCR). Results: Within the ranges of Ca++ and P ions concentrations tested, we observed that increased concentrations of Ca++ and P ions enhanced cell proliferation and formation of mineralized matrix nodules; whereas ALP activity was reduced. The RT-PCR results showed that elevated concentrations of Ca++ and P ions led to a general increase of Runx2 mRNA expression and decreased ALP mRNA expression, but gave no clear trend on OCN mRNA levels. Conclusion: The concentrations and ratios of Ca++ and P ions could significantly influence proliferation, differentiation, and mineralization of hPDLCs. Within the range of concentrations tested, we found that the combination of 9.0 mM Ca++ ions and 4.5 mM P ions were the optimum concentrations for proliferation, differentiation, and mineralization in hPDLCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.