966 resultados para Cytoplasmic and Nuclear


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this project was to synthesise fluorinated polymers that might act as hot material in a guest-host system for use in non-linear optical applications. These polymers would be expected to have the advantage over materials such as poly(vinylidene fluoride) which is known to be incompatible with many nlo active materials. A series of bicyclic fluorinated monomers was prepared by the reaction of fluorinated dienophiles with cyclopentadiene in a series of Diels-Alder reactions. The monomers were purified and then used in ring opening metathesis polymerisation. The materials were then characterised by gel permeation chromatography and nuclear magnetic resonance spectroscopy and cast as films for determination of their activities as nlo materials using a Nd/YAG laser system. The second harmonic intensity of each was measured relative to quartz. However no materials of significant activity were produced. In an attempt to produce polymers that might subsequently be functionalised the polymerisation of 1,2-methylenedioxybenzene and 1,4-benzodioxane was investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PKC-mediated signalling pathways are important in cell growth and differentiation, and aberrations in these pathways are implicated in tumourigenesis. The objective of this project was to clarify the link between cell growth inhibition and PKC modulation.The PKC activators bryostatin 1 and 12-0-tetradecanoylphorbol-13-acetate (TPA) inhibited growth in A549 and MCF-7 adenocarcinoma cells with great potency, and induced HL-60 leukaemia cell differentiation. Bistratene A affected these cells similarly. Experiments were conducted to test the hypotheses that bistratene A exerts its effects via PKC modulation and that characteristics of cytostasis induced by bryostatin 1 and TPA depend upon PKC isozyme-specific events. After incubation of A549 cells with TPA or bistratene A, 2D phosphoprotein electrophoretograrns revealed three proteins phosphorylated by both agents. However, bistratene A was unable to induce the formation of cellular networks on the basement membrane substitute Matrigel, and staurosporine was unable to reverse bistratene A-induced [3H]thymidine uptake inhibition, unlike TPA. Bistratene A did not induce PKC translocation or downregulation, activate or inhibit A549 and MCF-7 cell cytosolic PKC or compete for phorbol ester receptors. Western blot analysis and hydroxylapatite chromatography identified PKC α, ε and ζ in these cells. Bistratene A was unable to activate any of these isoforms. Therefore the agent does not exert its antiproliferative effects by modulation of PKC activity. The abilities of bryostatin 1 and TPA (10nM-1μM) to induce PKC isoform translocation and downregulation were compared with antiproliferative effects. Both agents induced dose-dependent downregulation and translocation of PKC α and ε to particulate and nuclear cell fractions. PKC ζ was translocated to the particulate fraction by both agents in MCF-7 cells. The similarity of PKC isoform redistribution by these agents did not explain their divergent effects on cell growth, and the role of nuclear translocation of PKC in cytostasis was not confirmed by these studies. Alternative factors governing the characteristics of growth inhibition induced by these agents are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic ß-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic ß-cells. ß-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1ß (32-fold increase), HNF4a (16-fold increase) and nuclear factor ?B (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (-3.73-fold) and UCP2 (-1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of ß-cell function-associated genes in mouse ß-cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sodium hypochlorite and sodium chlorite are commonly used as disinfectants, and understanding the mechanisms of microbial resistance to these compounds is of considerable importance. In this study, the role of oxidative stress and antioxidant enzymes in the sensitivity of the yeast Saccharomyces cerevisiae to hypochlorite and chlorite was studied. Yeast mutants lacking Cu-Zn superoxide dismutase, but not mutants deficient in cytoplasmic and peroxisomal catalase, were hypersensitive to the action of both hypochlorite and chlorite. Both compounds depleted cellular glutathione, induced the production of reactive oxygen species and decreased the viability of the cells. The toxicity of hypochlorite and chlorite was abolished by hypoxic and anoxic conditions and ameliorated by thiol antioxidants and ascorbate. The results demonstrated that the action of hypochlorite and chlorite involves the formation of superoxide and peroxide and that SOD1 is protective, probably by limiting the formation of hydroxyl radicals and damage to proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor ?B (NF-?B), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-?B, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-?B at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis of a novel heterocyclic–telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.