980 resultados para Cynicism reason
Resumo:
Dissertação de mestrado em Ciências da Comunicação (área de especialização em Publicidade e Relações Públicas)
Resumo:
Relatório de estágio de mestrado em Ciências da Comunicação (área de especialização em Publicidade e Relações Públicas)
Resumo:
B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.
Resumo:
Dissertação de mestrado em Direito dos Contratos e da Empresa
Resumo:
Dissertação de mestrado em Direito dos Contratos e das Empresas
Resumo:
The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.
Resumo:
Relatório de estágio de mestrado em Ensino da Educação Física no Ensino Básico e Secundário
Resumo:
Relatório de atividade profissional de mestrado em Ensino de Educação Física nos Ensinos Básico e Secundário
Resumo:
Dissertação de mestrado em Estatística
Resumo:
Mycotoxins are secondary metabolites produced by filamentous fungi that are toxic for humans and animals in small amounts and that are found worldwide in a large number of agricultural commodities. They are usually ingested involuntarily, when contaminated plant products are consumed, and represent a great risk for public health. Therefore, governments throughout the world have imposed strict legal limits for their levels in food and feed products in order to reduce potential health risks for consumers. Despite of its ubiquity, the mycotoxin problem is mainly dependent on regional factors, such as the mycotoxigenic characteristics of the local mycoflora, the local climate conditions, and the local agricultural practices. For this reason, a constant vigilance from local governmental food safety agencies and from the local researcher community is needed. This communication will review the current situation on the occurrence of mycotoxigenic fungi in some Portuguese cultures, such as wine grapes, corn and dried fruits. Particular attention will be given to the incidence of mycotoxigenic Aspergillus strains in those cultures and to the levels of ochratoxin A, aflatoxins, cyclopiazonic acid and fumonisin B2 produced. Data will be discussed taking into account the geographical origin of the isolates and the particular climate conditions of each sampling region. An updated review on the levels of the main mycotoxins found in local products and in imported commodities will also be presented.
Resumo:
Dissertação de mestrado em Ciências da Comunicação (área de especialização em Audiovisual e Multimédia)
Resumo:
Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.
Resumo:
Polysaccharides and oligosaccharides can improve quality and enhance nutritional value of final food products due to their technological and nutritional features ranging from their capacity to improve texture to their effect as dietary fibers. For this reason, they are among the most studied ingredients in the food industry. The use of natural polysaccharides and oligosaccharides as food additives has been a reality since the food industry understood their potential technological and nutritional applications. Currently, the replacement of traditional ingredients and/or the synergy between traditional ingredients and polysaccharides and oligosaccharides are perceived as promising approaches by the food industry. Traditionally, polysaccharides have been used as thickening, emulsifying, and stabilizing agents, however, at this moment polysaccharides and oligosaccharides claim health and nutritional advantages, thus opening a new market of nutritional and functional foods. Indeed, their use as nutritional food ingredients enabled the food industry to develop a countless number of applications, e.g., fat replacers, prebiotics, dietary fiber, and antiulcer agents. Based on this, among the scientific community and food industry, in the last years many research studies and commercial products showed the possibility of using either new or already used sources (though with changed properties) of polysaccharides for the production of food additives with new and enhanced properties. The increasing interest in such products is clearly illustrated by the market figures and consumption trends. As an example, the sole market of hydrocolloids is estimated to reach $7 billion in 2018. Moreover, oligosaccharides can be found in more than 500 food products resulting in a significant daily consumption. A recent study from the Transparency Market Research on Prebiotic Ingredients Market reported that prebiotics' demand was worth $2.3 billion in 2012 and it is estimated to reach $4.5 billion in 2018, growing at a compound annual growth rate of 11.4% between 2012 and 2018. The entrance of this new generation of food additives in the market, often claiming health and nutritional benefits, imposes an impartial analysis by the legal authorities regarding the accomplishment of requirements that have been established for introducing novel ingredients/food, including new poly- and oligosaccharides. This chapter deals with the potential use of polysaccharides and oligosaccharides as food additives, as well as alternative sources of these compounds and their possible applications in food products. Moreover, the regulation process to introduce novel polysaccharides and oligosaccharides in the market as food additives and to assign them health claims is discussed.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análises Químicas
Resumo:
Dissertação de mestrado em Optometria Avançada