954 resultados para Cyclic AMP Response Element Modulator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arousal scoring in Obstructive Sleep Apnea Syndrome (OSAS) is important to clarify the impact of the disease on sleep but the currently applied American Academy of Sleep Medicine (AASM) definition may underestimate the subtle alterations of sleep. The aims of the present study were to evaluate the impact of respiratory events on cortical and autonomic arousal response and to quantify the additional value of cyclic alternating pattern (CAP) and pulse wave amplitude (PWA) for a more accurate detection of respiratory events and sleep alterations in OSAS patients. A retrospective revision of 19 polysomnographic recordings of OSAS patients was carried out. Analysis was focused on quantification of apneas (AP), hypopneas (H) and flow limitation (FL) events, and on investigation of cerebral and autonomic activity. Only 41.1% of FL events analyzed in non rapid eye movement met the AASM rules for the definition of respiratory event-related arousal (RERA), while 75.5% of FL events ended with a CAP A phase. The dual response (EEG-PWA) was the most frequent response for all subtypes of respiratory event with a progressive reduction from AP to H and FL. 87.7% of respiratory events with EEG activation showed also a PWA drop and 53,4% of the respiratory events without EEG activation presented a PWA drop. The relationship between the respiratory events and the arousal response is more complex than that suggested by the international classification. In the estimation of the response to respiratory events, the CAP scoring and PWA analysis can offer more extensive information compared to the AASM rules. Our data confirm also that the application of PWA scoring improves the detection of respiratory events and could reduce the underestimation of OSAS severity compared to AASM arousal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full geometry optimizations using the PM3, AM1, 3-21G∗/HF and 6-31G∗/HF levels of theory were conducted on the syn and anti conformations of cyclic3′,5′-adenosine monophosphate (cAMP). Comparison of the anti crystal structures with the semiempirical and ab initio results revealed that the ab initio results agree well with the experimental results. The results of semiempirical calculations are in qualitative agreement with experimental and ab initio values, with the exception of the glycosyl torsion angle for the anti conformer. Sugar puckering, which is not handled properly by semiempirical methods for unconstrained sugars, nucleosides, nucleotides and nucleotide base pairs, is modeled reasonably well by the semiempirical methods for cAMP. This improvement results from the constraints introduced by the cyclization of AMP to form the phosphodiester.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental modal analysis techniques are applied to characterize the planar dynamic behavior of two spur planetary gears. Rotational and translational vibrations of the sun gear, carrier, and planet gears are measured. Experimentally obtained natural frequencies, mode shapes, and dynamic response are compared to the results from lumped-parameter and finite element models. Two qualitatively different classes of mode shapes in distinct frequency ranges are observed in the experiments and confirmed by the lumped-parameter model, which considers the accessory shafts and fixtures in the system to capture all of the natural frequencies and modes. The finite element model estimates the high-frequency modes that have significant tooth mesh deflection without considering the shafts and fixtures. The lumped-parameter and finite element models accurately predict the natural frequencies and modal properties established by experimentation. Rotational, translational, and planet mode types presented in published mathematical studies are confirmed experimentally. The number and types of modes in the low-frequency and high-frequency bands depend on the degrees of freedom in the central members and planet gears, respectively. The accuracy of natural frequency prediction is improved when the planet bearings have differing stiffnesses in the tangential and radial directions, consistent with the bearing load direction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dexamethasone is routinely administered to women at risk for a preterm birth in order to enhance fetal lung development and reduce uterine contractions. Research has demonstrated possible behavioral abnormalities in adulthood as a result of dexamethasone treatment. Using nonlinear mixed effects modeling, this study found thatprenatal dexamethasone treatment impaired spatial learning and memory of adult male Sprague-Dawley rats. Prenatal dexamethasone treatment also led to more anxiety related behaviors on Elevated Plus Maze testing 1.5 hours after a stress challenge. Because theassumptions underlying the independent samples t-test were violated, the randomization test was used to compare groups on the Elevated Plus Maze.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of Komendant's design of the Kimbell Art Museum was carried out in order to determine the effectiveness of the ring beams, edge beams and prestressing in the shells of the roof system. Finite element analysis was not available to Komendant or other engineers of the time to aid them in the design and analysis. Thus, the use of this tool helped to form a new perspective on the Kimbell Art Museum and analyze the engineer's work. In order to carry out the finite element analysis of Kimbell Art Museum, ADINA finite element analysis software was utilized. Eight finite element models (FEM-1 through FEM-8) of increasing complexity were created. The results of the most realistic model, FEM-8, which included ring beams, edge beams and prestressing, were compared to Komendant's calculations. The maximum deflection at the crown of the mid-span surface of -0.1739 in. in FEM-8 was found to be larger than Komendant's deflection in the design documents before the loss in prestressing force (-0.152 in.) but smaller than his prediction after the loss in prestressing force (-0.3814 in.). Komendant predicted a larger longitudinal stress of -903 psi at the crown (vs. -797 psi in FEM-8) and 37 psi at the edge (vs. -347 psi in FEM-8). Considering the strength of concrete of 5000 psi, the difference in results is not significant. From the analysis it was determined that both FEM-5, which included prestressing and fixed rings, and FEM-8 can be successfully and effectively implemented in practice. Prestressing was used in both models and thus served as the main contribution to efficiency. FEM-5 showed that ring and edge beams can be avoided, however an architect might find them more aesthetically appropriate than rigid walls.