958 resultados para Current Catalan novel
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types. In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro. The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.
Resumo:
Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.
Resumo:
The origins of the oxygen atoms in 1,7-dioxaspiro[5.5]undecane (1) and hydroxyspiroacetal (2) from Bactrocera cacuminata, and in 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (3) and hydroxyspiroacetal (4) from B. cucumis, have been investigated by incorporation studies from both [18O2]-dioxygen and [18O]-water. Combined GC-MS examination and high-field NMR analysis have demonstrated that all oxygen atoms in 1 and 2 from B. cacuminata are dioxygen derived, but in contrast, the spiroacetals 3 and 4 from B. cucumis incorporate one ring oxygen from water and one ring oxygen (and the hydroxyl oxygen in 4) from [18O2]-dioxygen. These results reveal not only the generality of monoxygenase mediation of spiroacetal formation in Bactrocera sp., but also an unexpected complexity in their biosynthesis. A general paradigm accommodating these and other observations is presented.
Resumo:
The factors that control replication rate of the intracellular bacterium Wolbachia pipientis in its insect hosts are unknown and difficult to explore, given the complex interaction of symbiont and host genotypes. Using a strain of Wolbachia that is known to over-replicate and shorten the lifespan of its Drosophila melanogaster host, we have tracked the evolution of replication control in both somatic and reproductive tissues in a novel host/Wolbachia association. After transinfection (the transfer of a Wolbachia strain into a different species) of the over-replicating Wolbachia popcorn strain from D. metanogaster to Drosophila simulans, we demonstrated that initial high densities in the ovaries were in excess of what was required for perfect maternal transmission, and were likely causing reductions in reproductive fitness. Both densities and fitness costs associated with ovary infection rapidly declined in the generations after transinfection. The early death effect in D. simulans attenuated only slightly and was comparable to that induced in D. metanogaster. This study reveals a strong host involvement in Wolbachia replication rates, the independence of density control responses in different tissues, and the strength of natural selection acting on reproductive fitness.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Inherited susceptibility to breast cancer results from germline mutations in one of a number of genes including BRCA1. A significant number of BRCA1-linked familial breast cancer patients, however, have no detectable BRCA1 mutation. This could be due in part to the inability of commonly used mutation-detection techniques to identify mutations outside the BRCA1 coding region. This paper addresses the hypothesis that non coding region mutations, specifically in the BRCA1 promoter, account for some of these cases. We describe a new and detailed restriction map of the 5' region of the BRCA1 gene including the nearby NBR2, psiBRCA1, and NBR1 genes and the isolation of a number of new informative hybridization probes suitable for Southern analysis. Using this information we screened DNA from lymphoblastoid cell-lines made from 114 UK familial breast cancer patients and detected one large deletion in the 5' region of BRCA1. We show that the breakpoints for this deletion are in BRCA1 intron 2 and between NBR2 and exon 2 of psiBRCA1, raising the possibility that this deletion arose via a novel mechanism involving BRCA1:psiBRCA1 recombination. We have also screened 60 familial breast cancer patients from the Australian population, using an amplification refractory mutation system (ARMS) technique described previously by our group, and found one patient with a genotype consistent with a BRCA1 promoter deletion. These findings indicate that germline BRCA1 promoter deletions are a rare and yet significant mutation event and that they could arise via a novel genetic mechanism. Hum Mutat 19:435-442, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
The unusual chiral heterocyclic systems, trioxabicyclo[3.3.1]nona-3,7-dienes (bridged bisdioxines), are incorporated as novel spacer molecules into macrocyclic polyether ring systems of various sizes (8, 9 as well as 11-15) by cyclocondensation reaction of the! bisacid chloride 4b or bisesters 6,7 and 10, with several ethylene glycols. The 2:2 macrocycles 12-14 are obtained in approximately 50:50 mixtures of diastereomers. These conclusions are mainly based on HPLC data presented in Table I as well as X-ray analyses of (1R,5R)-8c (space group Pbca, a = 10.163(3) Angstrom, b = 18.999(4) Angstrom, c = 36.187(10) Angstrom, V = 6987(3) Angstrom(3), Z = 8, d(calc) = 1.218 g cm(-3), 6974 reflections, R = 0.0553.), mesolrac-11 (space group P (1) over bar, a = 10.472(5) Angstrom, b = 16.390(5) Angstrom, c = 17.211(5) Angstrom, alpha = 98.69(2)degrees, beta = 93.04(2)degrees, gamma = 98.52(2)degrees, V = 2879.3(18) Angstrom(3), Z = 2, d(calc) = 1.173 g cm(-3), 11,162 reflections, R = 0.0945) and meso-12 (space group P2(1)/c, a = 9.927(2), b = 18.166(3), c = 17.820(3) Angstrom, beta = 96.590(10)degrees, V = 3192.3(10)Angstrom(3), Z = 4, D-c = 1.109 g cm(-3), 3490 reflections, R = 0.0646). The 1:1 macrocycles 8b,c are also formed by intramolecular transesterification of the open-chain bisesters 7b,c and their formation is favored by the use of metal ions as templates. The bridged bisdioxine moieties in 8b and 12 are converted into the corresponding chiral tetra-oxaadamantane spacers to afford macrocycles 16 and 17. Preliminary metal ion complexation studies with selected species (8c, 11-14) were also performed.
Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein
Resumo:
The cis-acting response element, A2RE, which is sufficient for cytoplasmic mRNA trafficking in oligodendrocytes, binds a small group of rat brain proteins. Predominant among these is heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor for cytoplasmic trafficking of RNAs bearing A2RE-like sequences. We have now identified the other A2RE-binding proteins as hnRNP A1/A1(B), hnRNP B1, and four isoforms of hnRNP A3. The rat and human hnRNP A3 cDNAs have been sequenced, revealing the existence of alternatively spliced mRNAs. In Western blotting, 38-, 39-, 41 -, and 41.5-kDa components were all recognized by antibodies against a peptide in the glycine-rich region of hnRNP A3, but only the 41- and 41.5-kDa bands bound antibodies to a 15-residue N-terminal peptide encoded by an alternatively spliced part of exon 1. The identities of these four proteins were verified by Edman sequencing and mass spectral analysis of tryptic fragments generated from electrophoretically separated bands. Sequence-specific binding of bacterially expressed hnRNP A3 to A2RE has been demonstrated by biosensor and UV cross-linking electrophoretic mobility shift assays. Mutational analysis and confocal microscopy data support the hypothesis that the hnRNP A3 isoforms have a role in cytoplasmic trafficking of RNA.