912 resultados para Correlated mating
Resumo:
Populations of the Queensland fruit fly, Bactrocera tryoni, are routinely monitored using cue-lure, a male-only attractant. Such monitoring provides no information about females and there is little information available to show if male and female B. tryoni numbers are correlated in the field. Using a data set of 1 148 weekly clearances of orange-ammonia baited traps, which catch both males and females, the correlation between male and female numbers was tested for 48 weeks of the year (four weeks each month) and for the combined data set. Weekly male and female trap catches were almost entirely highly correlated, regardless of mean population size or time of year. For the whole year, the correlation between male and female numbers was r = 0.722, significant at p<0.001. Results suggest that changes in the number if male B. tryoni, as detected through cue-lure sampling, will reflect changes in numbers of female B. tryoni.
Resumo:
For fruit flies, fully ripe fruit is preferred for adult oviposition and is superior for offspring performance over unripe or ripening fruit. Because not all parts of a single fruit ripen simultaneously, the opportunity exists for adult fruit flies to selectively choose riper parts of a fruit for oviposition and such selection, if it occurs, could positively influence offspring performance. Such fine scale host variation is rarely considered in fruit fly ecology, however, especially for polyphagous species which are, by definition, considered to be generalist host users. Here we study the adult oviposition preference/larval performance relationship of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a highly polyphagous pest species, at the “within-fruit” level to see if such a host use pattern occurs. We recorded the number of oviposition attempts that female flies made into three fruit portions (top, middle and bottom), and larval behavior and development within different fruit portions for ripening (color change) and fully-ripe mango, Mangifera indica L. (Anacardiaceae). Results indicate that female B. dorsalis do not oviposit uniformly across a mango fruit, but lay most often in the top (i.e., stalk end) of fruit and least in the bottom portion, regardless of ripening stage. There was no evidence of larval feeding site preference or performance (development time, pupal weight, percent pupation) being influenced by fruit portion, within or across the fruit ripening stages. There was, however, a very significant effect on adult emergence rate from pupae, with adult emergence rate from pupae from the bottom of ripening mango being approximately only 50% of the adult emergence rate from the top of ripening fruit, or from both the top and bottom of fully-ripe fruit. Differences in mechanical (firmness) and chemical (total soluble solids, titratable acidity, total non-structural carbohydrates) traits between different fruit portions were correlated with adult fruit utilisation. Our results support a positive adult preference/offspring performance relationship at within-fruit level for B. dorsalis. The fine level of host discrimination exhibited by B. dorsalis is at odds with the general perception that, as a polyphagous herbivore, the fly should show very little discrimination in its host use behavior.
Resumo:
An often neglected but well recognised aspect of successful engineering asset management is the achievement of co-operation and collaboration between various occupational, functional and hierarchical levels present within complex technical environments. Engineering and technical contexts have been well documented for the presence of highly cohesive groups based around around functional or role orientations. However while highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Improved collaboration and co-operation between groups has been demonstrated to result in a number of positive outcomes at an individual, group and organisational level. Example outcomes include an increased capacity for problem solving, improved responsiveness and adaptation to organisational crises, higher morale and an increased ability to leverage workforce capability. However, an essential challenge for organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper reviews the ability of Web 2.0 technologies and mobile computing devices to facilitate and encourage knowledge sharing between “silo’d” groups. Commonly available tools such as Facebook, Twitter, Blogs, Wiki’s and others will be reviewed in relation to their applicability, functionality and ease-of-use by engineering and technical personnel. The paper also documents three case examples of engineering organisations that have successfully employed Web 2.0 to achieve superior knowledge management. With a number of clear recommendations the paper is an essential starting point for any organization looking at the use of new generation technologies for achieving the significant outcomes associated with knowledge transfer.
Resumo:
The Bayley Scales of Infant Development, Third Edition (Bayley-III) and Stanford-Binet Intelligence Scale, Fifth Edition (SB5) were administered in a sample of 26 typically developing children (12 males and 14 females) aged 24 – 42 months. Children completed the assessments in two separate sessions, counterbalanced for order of administration. Scores on the two instruments were not significantly related, with the exception of the SB5 Knowledge score, which was moderately correlated with the Language score on the Bayley-III (r = .41, p = 0.04). Despite no other significant correlations, for 22 of the 26 children, scores were very consistent across the two instruments. Implications for test selection are discussed.
Resumo:
The 27-item Intolerance of Uncertainty Scale (IUS) has become one of the most frequently used measure of Intolerance of Uncertainty. More recently, an abridged, 12-item version of the IUS has been developed. The current research used clinical (n = 50) and non-clinical (n = 56) samples to examine and compare the psychometric properties of both versions of the IUS. The two scales showed good internal consistency at both the total and subscale level and had satisfactory test-retest reliability. Both versions were correlated with worry and trait anxiety and had satisfactory concurrent validity. Significant differences between the scores of the clinical and non-clinical sample supported discriminant validity. Predictive validity was also supported for the two scales. Total scores, in the case of the clinical sample, and a subscale, in the case of the non-clinical sample, significantly predicted pathological worry and trait anxiety. Overall, the clinicians and researchers can use either version of the IUS with confidence, due to their sound psychometric properties.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Resumo:
This is my penultimate report as National President of the Australian Institute of Traffic Planning and Management, Inc. As an academic, I would like to take this opportunity to raise some issues and challenges I see in transport professional education in Australia. My general view is that the transport profession has until recently been less conspicuous to others as an identifiable discipline. This is both a blessing and somewhat of a curse. People mostly enter, or sometimes fall into, the transport profession having taken a degree in civil engineering, other engineering, urban and regional planning, economics, industrial psychology, business, followed by the less obvious disciplines. This order is probably about relative to the proportion of members’ background qualifications in our ranks too. However, once a graduate destined to become a transport professional has spent about five years or so out of the academic estuary, they tend to specialise in an area that cannot necessarily be easily correlated to the well known courses I have rattled off above. I can say from experience that it is not out of the question to see SIDRA models having been prepared by a transport professional who did not take traffic engineering as part of a civil engineering degree. So I see a couple of key challenges for the transport profession, which happens to be represented by a number of bodies, with our AITPM perhaps being the peak body, into the future,
Resumo:
NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization
Resumo:
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.
Resumo:
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Resumo:
Chondrocyte density in articular cartilage is known to change with the development and growth of the tissue and may play an important role in the formation of a functional extracellular matrix (ECM). The objective of this study was to determine how initial chondrocyte density in an alginate hydrogel affects the matrix composition, its distribution between the cell-associated (CM) and further removed matrix (FRM) fractions, and the tensile mechanical properties of the developing engineered cartilage. Alginate constructs containing primary bovine chondrocytes at densities of 0, 4, 16, and 64 million cells/ml were fabricated and cultured for 1 or 2 weeks, at which time structural, biochemical, and mechanical properties were analyzed. Both matrix content and distribution varied with the initial cell density. Increasing cell density resulted in an increasing content of collagen and sulfated-glycosaminoglycan (GAG) and an increasing proportion of these molecules localized in the CM. While the equilibrium tensile modulus of cell-free alginate did not change with time in culture, the constructs with highest cell density were 116% stiffer than cell-free controls after 2 weeks of culture. The equilibrium tensile modulus was positively correlated with total collagen (r2 = 0.47, p < 0.001) and GAG content (r2 = 0.68, p < 0.001), and these relationships were enhanced when analyzing only those matrix molecules in the CM fraction (r2 = 0.60 and 0.72 for collagen and GAG, respectively, each p < 0.001). Overall, the results of this study indicate that initial cell density has a considerable effect on the developing composition, structure, and function of alginate–chondrocyte constructs.
Resumo:
Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p < 0.05) by a factor of 4-5 from the top 0.1 mm (28 +/- 13 kPa, 141 +/- 10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p < 0.001), and correlated with the modulus (both p < 0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Optimum Wellness involves the development, refinement and practice of lifestyle choices which resonate with personally meaningful frames of reference. Personal transformations are the means by which our frames of reference are refined across the lifespan. It is through critical reflection, supportive relationships and meaning making of our experiences that we construct and reconstruct our life paths. When individuals are able to be what they are destined to be or reach their higher purpose, then they are able to contribute to the world in positive and meaningful ways. Transformative education facilitates the changes in perspective that enable one to contemplate and travel a path in life that leads to self-actualisation. This thesis argues for an integrated theoretical framework for optimum Wellness Education. It establishes a learner centred approach to Wellness education in the form of an integrated instructional design framework derived from both Wellness and Transformative education constructs. Students’ approaches to learning and their study strategies in a Wellness education context serve to highlight convergences in the manner in which students can experience perspective transformation. As they learn to critically reflect, pursue relationships and adapt their frames of reference to sustain their pursuit of both learning and Wellness goals, strengthening the nexus between instrumental and transformative learning is a strategically important goal for educators. The aim of this exploratory research study was to examine those facets that serve to optimise the learning experiences of students in a Wellness course. This was accomplished through three research issues: 1) What are the relationships between Wellness, approaches to learning and academic success? 2) How are students approaching learning in an undergraduate Wellness subject? Why are students approaching their learning in the ways they do? 3) What sorts of transformations are students experiencing in their Wellness? How can transformative education be formulated in the context of an undergraduate Wellness subject? Subsequent to a thorough review of the literature pertaining to Wellness education, a mixed method embedded case study design was formulated to explore the research issues. This thesis examines the interrelationships between student, content and context in a one semester university undergraduate unit (a coherent set of learning activities which is assigned a unit code and a credit point value). The experiences of a cohort of 285 undergraduate students in a Wellness course formed the unit of study and seven individual students from a total of sixteen volunteers whose profiles could be constructed from complete data sets were selected for analysis as embedded cases. The introductory level course required participants to engage in a personal project involving a behaviour modification plan for a self-selected, single dimension of Wellness. Students were given access to the Standard Edition Testwell Survey to assess and report their Wellness as a part of their personal projects. To identify relationships among the constructs of Self-Regulated Learning (SRL), Wellness and Student Approaches to Learning (SAL) a blend of quantitative and qualitative methods to collect and analyse data was formulated. Surveys were the primary instruments for acquiring quantitative data. Sources included the Wellness data from Testwell surveys, SAL data from R-SPQ surveys, SRL data from MSLQ surveys and student self-evaluation data from an end of semester survey. Students’ final grades and GPA scores were used as indicators of academic performance. The sources of qualitative data included subject documentation, structured interview transcripts and open-ended responses to survey items. Subsequent to a pilot study in which survey reliability and validity were tested in context, amendments to processes for and instruments of data collection were made. Students who adopted meaning oriented (deep/achieving) approaches tended to assess their Wellness at a higher level, seek effective learning strategies and perform better in formal study. Posttest data in the main study revealed that there were significant positive statistical relationships between academic performance and total wellness scores (rs=.297, n=205, p<.01). Deep (rs=.343, n=137, p<.01) and achieving (rs=.286, n=123, p<.01) approaches to learning also significantly correlated with Wellness whilst surface approaches had negative correlations that were not significant. SRL strategies including metacognitive selfregulation, effort, help-seeking and critical thinking were increasingly correlated with Wellness. Qualitative findings suggest that while all students adopt similar patterns of day to day activities for example attending classes, taking notes, working on assignments the level of care with which these activities is undertaken varies considerably. The dominant motivational trigger for students in this cohort was the personal relevance and associated benefits of the material being learned and practiced. Students were inclined to set goals that had a positive impact on affect and used “sense of happiness” to evaluate their achievement status. Students who had a higher drive to succeed and/or understand tended to have or seek a wider range of strategies. Their goal orientations were generally learning rather than performance based and barriers presented a challenge which could be overcome as opposed to a blockage which prevented progress. Findings from an empirical analysis of the Testwell data suggest that a single third order Wellness construct exists. A revision of the instrument is necessary in order to juxtapose it with the chosen six dimensional Wellness model that forms the foundation construct in the course. Further, redevelopment should be sensitive to the Australian context and culture including choice of language, examples and scenarios used in item construction. This study concludes with an heuristic for use in Wellness education. Guided by principles of Transformative education theory and behaviour change theory, and informed by this representative case study the “CARING” heuristic is proposed as an instructional design tool for Wellness educators seeking to foster transformative learning. Based upon this study, recommendations were made for university educators to provide authentic and personal experiences in Wellness curricula. Emphasis must focus on involving students and teachers in a partnership for implementing Wellness programs both in the curriculum and co-curricularly. The implications of this research for practice are predicated on the willingness of academics to embrace transformative learning at a personal level and a professional one. To explore students’ profiles in detail is not practical however teaching students how to guide us in supporting them through the “pain” of learning is a skill which would benefit them and optimise the learning and teaching process. At a theoretical level, this research contributes to an ecological theory of Wellness education as transformational change. By signposting the wider contexts in which learning takes place, it seeks to encourage changing paradigms to ones which harness the energy of each successive contextual layer in which students live. Future research which amplifies the qualities of individuals and groups who are “Well” and seeks the refinement and development of instruments to measure Wellness constructs would be desirable for both theoretical and applied knowledge bases. Mixed method Wellness research derived and conducted by teams that incorporate expertise from multiple disciplines such as psychology, anthropology, education, and medicine would enable creative and multi-perspective programs of investigation to be designed and implemented. Congruences and inconsistencies in health promotion and education would provide valuable material for strengthening the nexus between transformational learning and behaviour change theories. Future development of and research on the effectiveness of the CARING heuristic would be valuable in advancing the understanding of pedagogies which advance rather than impede learning as a transformative process. Exploring pedagogical models that marry with transformative education may render solutions to the vexing challenge of teaching and learning in diverse contexts.
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.