840 resultados para Control and Optimization
Resumo:
Purpose – The purpose of this paper is to consider hierarchical control as a mode of governance, and analyses the extent of control exhibited by central government over local government through the best value (BV) and comprehensive performance assessment (CPA) performance regimes. Design/methodology/approach – This paper utilises Ouchi's framework and, specifically, his articulation of bureaucratic or hierarchical control in the move towards achievement of organisational objectives. Hierarchical control may be inferred from the extent of “command and control” by Central Government, use of rewards and sanctions, and alignment to government priorities and discrimination of performance. Findings – CPA represents a more sophisticated performance regime than BV in the governance of local authorities by central government. In comparison to BV, CPA involved less scope for dialogue with local government prior to introduction, closer inspection of and direction of support toward poorer performing authorities, and more alignment to government priorities in the weightings attached to service blocks. Originality/value - The paper focuses upon the hierarchic/bureaucratic mode of governance as articulated by Ouchi and expands on this mode in order to analyse shifts in performance regimes in the public sector.
Resumo:
This book is very practical in its international usefulness (because current risk practice and understanding is not equal across international boundaries). For example, an accountant in Belgium would want to know what the governance regulations are in that country and what the risk issues are that he/she needs to be aware of. This book covers the international aspect of risk management systems, risk and governance, and risk and accounting. In doing so the book covers topics such as: internal control and corporate governance; risk management systems; integrating risk into performance management systems; risk and audit; governance structures; risk management of pensions; pension scheme risks e.g. hedging derivatives, longevity bonds etc; risk reporting; and the role of the accountant in risk management. There are the case studies through out the book which illustrate by way of concrete practical examples the major themes contained in the book. The book includes highly topical areas such as the Sarbanes Oxley Act and pension risk management.
Resumo:
The inference and optimization in sparse graphs with real variables is studied using methods of statistical mechanics. Efficient distributed algorithms for the resource allocation problem are devised. Numerical simulations show excellent performance and full agreement with the theoretical results. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
It is shown that any multicriteria problem can be represented by a hierarchical system. Separate properties of the object are evaluated at the lower level of the system, using a criteria vector, and a composition mechanism is used to evaluate the object as a whole at the upper level. The paper proposes a method to solve complex multicriteria problems of evaluation and optimization. It is based on nested scalar convolutions of vector- valued criteria and allows simple structural and parametrical synthesis of multicriteria hierarchical systems.
Resumo:
The problem of MPLS networks survivability analysis is considered in this paper. The survivability indexes are defined which take into account the specificity of MPLS networks and the algorithm of its estimation is elaborated. The problem of MPLS network structure optimization under the constraints on the survivability indexes is considered and the algorithm of its solution is suggested. The experimental investigations were carried out and their results are presented.
Resumo:
BOOK REVIEWS Multibody System Mechanics: Modelling, Stability, Control, and Ro- bustness, by V. A. Konoplev and A. Cheremensky, Mathematics and its Appli- cations Vol. 1, Union of Bulgarian Mathematicians, Sofia, 2001, XXII + 288 pp., $ 65.00, ISBN 954-8880-09-01
Resumo:
Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.
Resumo:
An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.
Resumo:
Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.
Resumo:
A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.
Resumo:
Research Question/Issue - Which forms of state control over corporations have emerged in countries that made a transition from centrally-planned to marked-based economies and what are their implications for corporate governance? We assess the literature on variation and evolution of state control in transition economies, focusing on corporate governance of state-controlled firms. We highlight emerging trends and identify future research avenues. Research Findings/Insights - Based on our analysis of more than 100 articles in leading management, finance, and economics journals since 1989, we demonstrate how research on state control evolved from a polarized approach of public–private equity ownership comparison to studying a variety of constellations of state capitalism. Theoretical/Academic Implications - We identify theoretical perspectives that help us better understand benefits and costs associated with various forms of state control over firms. We encourage future studies to examine how context-specific factors determine the effect of state control on corporate governance. Practitioner/Policy Implications - Investors and policymakers should consider under which conditions investing in state-affiliated firms generates superior returns.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^