992 resultados para Contactless conductivity detection
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space viewpoint is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces $\mathcal{S_I}$ and $\mathcal{S_C}$ and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating $\mathcal{S_I}$ and $\mathcal{S_C}$ is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. The average case CC of the relevant greater-than (GT) function is characterized within two bits. In the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm.
Resumo:
The electrical conduction in insulating materials is a complex process and several theories have been suggested in the literature. Many phenomenological empirical models are in use in the DC cable literature. However, the impact of using different models for cable insulation has not been investigated until now, but for the claims of relative accuracy. The steady state electric field in the DC cable insulation is known to be a strong function of DC conductivity. The DC conductivity, in turn, is a complex function of electric field and temperature. As a result, under certain conditions, the stress at cable screen is higher than that at the conductor boundary. The paper presents detailed investigations on using different empirical conductivity models suggested in the literature for HV DC cable applications. It has been expressly shown that certain models give rise to erroneous results in electric field and temperature computations. It is pointed out that the use of these models in the design or evaluation of cables will lead to errors.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Resumo:
The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.
Resumo:
DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 ILL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A nanoscale-sized cage with a trigonal prismatic shape is prepared by coordination-driven self-assembly of a predesigned organometallic Pt-3 acceptor with an organic clip-type ligand. This trigonal prism is fluorescent and undergoes efficient fluorescence quenching by nitroaromatics, which are the chemical signatures of many explosives.
Resumo:
A highly sensitive and specific reverse transcription polymerase chain reaction enzyme linked immunosorbent assay (RT-PCR-ELISA) was developed for the objective detection of nucleoprotein (N) gene of peste des petits ruminants (PPR) virus from field outbreaks or experimentally infected sheep. Two primers (IndF and Np4) and one probe (Sp3) available or designed for the amplification/probing of the 'N' gene of PPR virus, were chosen for labeling and use in RT-PCR-ELISA based on highest analytical sensitivity of detection of infective virus or N-gene containing recombinant plasmid, higher nucleotide homology at the primer binding sites of the 'N' gene sequences available and the ability to amplify PPR viral genome from different sources of samples. RT-PCR was performed with unlabeled IndF and Np4 digoxigenin labeled primers followed by a microplate hybridization probe reaction with biotin labeled Sp3 probe. RT-PCR-ELISA was found to be 10-fold more sensitive than the conventional RT-PCR followed by agarose gel based detection of PCR product. Based on the Mean (mean +/- 3S.D.) optical density (OD) values of 47 RT-PCR negative samples, OD values above 0.306 were considered positive in RT-PCR-ELISA. A total of 82 oculo-nasal swabs and tissue samples from suspected PPR cases were analyzed by RT-PCR and RT-PCR-ELISA, which revealed 54.87 and 58.54% positivity, respectively. From an experimentally infected sheep, both RT-PCR and RT-PCR-ELISA could detect the virus from 6 days post-infection up to 9 days in oculo-nasal swabs. On post-mortem, PPR viral genome was detected in spleen, lymph node, lung, heart and liver. The correlation co-efficient between RT-PCR-ELISA OD values and either TCID50 of virus or molecules of DNA was 0.622 and 0.657, respectively. The advantages of RT-PCR-ELISA over the conventional agarose gel based detection of RT-PCR products are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The MIT Lincoln Laboratory IDS evaluation methodology is a practical solution in terms of evaluating the performance of Intrusion Detection Systems, which has contributed tremendously to the research progress in that field. The DARPA IDS evaluation dataset has been criticized and considered by many as a very outdated dataset, unable to accommodate the latest trend in attacks. Then naturally the question arises as to whether the detection systems have improved beyond detecting these old level of attacks. If not, is it worth thinking of this dataset as obsolete? The paper presented here tries to provide supporting facts for the use of the DARPA IDS evaluation dataset. The two commonly used signature-based IDSs, Snort and Cisco IDS, and two anomaly detectors, the PHAD and the ALAD, are made use of for this evaluation purpose and the results support the usefulness of DARPA dataset for IDS evaluation.
Resumo:
Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.