982 resultados para Conformal Field Theory, Entanglement Entropy, Integrable systems
Resumo:
Ancrée dans le domaine de la didactique des mathématiques, notre thèse cible le « travail de l’erreur » effectué par trois enseignants dans leur première année de carrière. Libérés des contraintes associées au système de formation initiale, ces sujets assument pleinement leur nouveau rôle au sein de la classe ordinaire. Ils se chargent, entre autres, de l’enseignement de l’arithmétique et, plus précisément, de la division euclidienne. Parmi leurs responsabilités se trouvent le repérage et l’intervention sur les procédures erronées. Le « travail de l’erreur » constitue l’expression spécifique désignant cette double tâche (Portugais 1995). À partir d’un dispositif de recherche combinant les méthodes d’observation et d’entrevue, nous documentons des séances d’enseignement afin de dégager les situations où nos maîtres du primaire identifient des erreurs dans les procédures algorithmiques des élèves et déploient, subséquemment, des stratégies d’intervention. Nous montrons comment ces deux activités sont coordonnées en décrivant les choix, décisions et actions mises en œuvre par nos sujets. Il nous est alors possible d’exposer l’organisation de la conduite de ces jeunes enseignants en fonction du traitement effectif de l’erreur arithmétique. En prenant appui sur la théorie de champs conceptuels (Vergnaud 1991), nous révélons l’implicite des connaissances mobilisées par nos sujets et mettons en relief les mécanismes cognitifs qui sous-tendent cette activité professionnelle. Nous pouvons ainsi témoigner, du moins en partie, du travail de conceptualisation réalisé in situ. Ce travail analytique permet de proposer l’existence d’un schème du travail de l’erreur chez ces maîtres débutants, mais aussi de spécifier sa nature et son fonctionnement. En explorant le versant cognitif de l’activité enseignante, notre thèse aborde une nouvelle perspective associée au thème du repérage et de l’intervention sur l’erreur de calcul de divisions en colonne.
Resumo:
En 2012, la traduction au Québec d'ouvrages littéraires d'auteurs issus de l'Amérique hispanique est encore un phénomène marginal. Pourtant, les entreprises de traduction de tels ouvrages se sont faites plus nombreuses au cours des vingt dernières années, et deux maisons d'édition québécoises leur ont fait la part belle : Les Écrits des Forges et Les Allusifs. La première a publié en français de nombreux canons de la poésie mexicaine tandis que la seconde possède à son catalogue (maintenant chez Leméac) bon nombre d'auteurs hispano-américains. Les efforts de ces éditeurs ont été précédés d'un premier mouvement d'accueil de la littérature hispano-américaine, mouvement principalement lié à la venue au Canada d'auteurs hispano-américains immigrants, souvent des réfugiés qui avaient fui la guerre ou la dictature dans leur pays d'origine. À partir de la théorie des champs de Pierre Bourdieu et de l’application de cette théorie à l’espace littéraire international par Pascale Casanova, ce mémoire cherche à expliquer plus en détail les conditions et logiques qui sous-tendent la traduction et l’édition des littératures hispano-américaines au Québec. Pour ce faire, il analyse la trajectoire de trois auteurs dont chacun a vu au moins un de ses titres publié en français. Ces auteurs sont le Salvadorien Horacio Castellanos Moya, dont le roman intitulé Le Dégoût a été publié aux Allusifs en 2003, le Mexicain Jaime Sabines, dont Poemas del peatón/Poèmes du piéton a été publié aux Écrits des Forges en 1997, et la Colombienne québécoise Yvonne América Truque, dont le recueil de poèmes Proyección de los silencios/Projection des silences a été publié au CÉDAH en 1986. Chacune des trajectoires illustre un modèle de production et de diffusion particulier de la littérature hispano-américaine en traduction qui s’est manifesté durant les vingt dernières années. Ensemble, elles permettent de dégager le parcours évolutif de l’édition vers une intégration de plus en plus mondialisée des mécanismes de diffusion des biens symboliques.
Resumo:
À travers cette thèse, nous revisitons les différentes étapes qui ont conduit à la découverte des isolants topologiques, suite à quoi nous nous penchons sur la question à savoir si une phase topologiquement non-triviale peut coexister avec un état de symétrie brisée. Nous abordons les concepts les plus importants dans la description de ce nouvel état de la matière, et tentons de comprendre les conséquences fascinantes qui en découlent. Il s’agit d’un champ de recherche fortement alimenté par la théorie, ainsi, l’étude du cadre théorique est nécessaire pour atteindre une compréhension profonde du sujet. Le chapitre 1 comprend un retour sur l’effet de Hall quantique, afin de motiver les sections subséquentes. Le chapitre 2 présente la première réalisation d’un isolant topologique à deux dimensions dans un puits quantique de HgTe/CdTe, suite à quoi ces résultats sont généralisés à trois dimensions. Nous verrons ensuite comment incorporer des principes de topologie dans la caractérisation d’un système spécifique, à l’aide d’invariants topologiques. Le chapitre 3 introduit le premier dérivé de l’état isolant topologique, soit l’isolant topologique antiferromagnétique (ITAF). Après avoir motivé théoriquement le sujet et introduit un invariant propre à ce nouvel état ITAF, qui est couplé à l’ordre de Néel, nous explorons, dans les chapitres 4 et 5, deux candidats de choix pour la phase ITAF : GdBiPt et NdBiPt.
Resumo:
New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs
Resumo:
This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed a theory of the electron incorporating its gravitational field, using his substitutes for Einstein’s equation.The third chapter deals with the application of geometric algebra to Koga’s approach of the Dirac equation. In chapter 4 we study some aspects of the work of mendel sachs (35,36,37,).Sachs stated aim is to show how quantum mechanics is a limiting case of a general relativistic unified field theory.Chapter 5 contains a critical study and comparison of the work of Koga and Sachs. In particular, we conclude that the incorporation of Mach’s principle is not necessary in Sachs’s treatment of the Dirac equation.
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.