758 resultados para Condylar hyperplasia
Resumo:
OBJECTIVES The aim of this study was to compare the efficacy of amphilimus-eluting stents (AES) with that of everolimus-eluting stents (EES) in patients with diabetes mellitus (DM). BACKGROUND The AES is a polymer-free drug-eluting stent that elutes sirolimus formulated with an amphiphilic carrier from laser-dug wells. This technology could be associated with a high efficacy in patients with DM. METHODS This was a multicenter, randomized, noninferiority trial. Patients with DM medically treated with oral glucose-lowering agents or insulin and de novo coronary lesions were randomized in a 1:1 fashion to AES or EES. The primary endpoint was the neointimal (NI) volume obstruction assessed by optical coherence tomography at 9-month follow-up. RESULTS A total of 116 lesions in 112 patients were randomized. Overall, 40% were insulin-treated patients, with a median HbA1c of 7.3% (interquartile range: 6.7% to 8.0%). The primary endpoint, NI volume obstruction, was 11.97 ± 5.94% for AES versus 16.11 ± 18.18% for EES, meeting the noninferiority criteria (p = 0.0003). Pre-specified subgroup analyses showed a significant interaction between stent type and glycemic control (p = 0.02), with a significant reduction in NI hyperplasia in the AES group in patients with the higher HbA1c (p = 0.03). By quantitative coronary angiography, in-stent late loss was 0.14 ± 0.24 for AES versus 0.24 ± 0.57 mm for EES (p = 0.27), with a larger minimal lumen diameter at follow-up for AES (p = 0.02), mainly driven by 2 cases of occlusive restenosis in the EES group. CONCLUSIONS AES are noninferior to EES for the coronary revascularization of patients with DM. These results suggest a high efficacy of the AES and may support the potential benefit of this stent in patients with DM. (A Randomized Comparison of Reservoir-Based Polymer-Free Amphilimus-Eluting Stents Versus Everolimus-Eluting Stents With Durable Polymer in Patients With Diabetes Mellitus [RESERVOIR]; NCT01710748).
Resumo:
AIMS Bindarit (BND) is a selective inhibitor of monocyte chemotactic protein-1 (MCP-1/CCL2), which plays an important role in generating intimal hyperplasia. Our aim was to explore the efficacy and safety of bindarit in preventing restenosis following percutaneous coronary intervention. METHODS AND RESULTS A phase II, double-blind, multicentre randomised trial included 148 patients randomised into three arms (BND 600 mg, n=48; BND 1,200 mg, n=49; PLB, n=51). Bindarit was given following PCI and continued for 180 days. Monthly clinical follow-up and six-month coronary angiography were conducted. The primary endpoint was in-segment late loss; the main secondary endpoints were in-stent late loss and major adverse cardiovascular events. Efficacy analysis was carried out on two populations, ITT and PP. There were no significant differences in the baseline characteristics among the three treatment groups. In-segment and in-stent late loss at six months in BND 600, BND 1,200 and PLB were: (ITT 0.54 vs. 0.52 vs. 0.72; p=0.21), (PP 0.46 vs. 0.53 vs. 0.72; p=0.12) and (ITT 0.74 vs. 0.74 vs. 1.05; p=0.01), (PP 0.66 vs. 0.73 vs. 1.06; p=0.003), respectively. The MACE rates at nine months among treatment groups were 20.8% vs. 28.6% vs. 25.5% (p=0.54), respectively. CONCLUSIONS This was a negative study with the primary endpoint not being met. However, significant reduction in the in-stent late loss suggests that bindarit probably exerts a favourable action on the vessel wall following angioplasty. Bindarit was well tolerated with a compliance rate of over 90%. A larger study utilising a loading dose and targeting a specific patient cohort may demonstrate more significant results.
Resumo:
BACKGROUND Multiple scores have been proposed to stratify bleeding risk, but their value to guide dual antiplatelet therapy duration has never been appraised. We compared the performance of the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines), ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy), and HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) scores in 1946 patients recruited in the Prolonging Dual Antiplatelet Treatment After Grading Stent-Induced Intimal Hyperplasia Study (PRODIGY) and assessed hemorrhagic and ischemic events in the 24- and 6-month dual antiplatelet therapy groups. METHODS AND RESULTS Bleeding score performance was assessed with a Cox regression model and C statistics. Discriminative and reclassification power was assessed with net reclassification improvement and integrated discrimination improvement. The C statistic was similar between the CRUSADE score (area under the curve 0.71) and ACUITY (area under the curve 0.68), and higher than HAS-BLED (area under the curve 0.63). CRUSADE, but not ACUITY, improved reclassification (net reclassification index 0.39, P=0.005) and discrimination (integrated discrimination improvement index 0.0083, P=0.021) of major bleeding compared with HAS-BLED. Major bleeding and transfusions were higher in the 24- versus 6-month dual antiplatelet therapy groups in patients with a CRUSADE score >40 (hazard ratio for bleeding 2.69, P=0.035; hazard ratio for transfusions 4.65, P=0.009) but not in those with CRUSADE score ≤40 (hazard ratio for bleeding 1.50, P=0.25; hazard ratio for transfusions 1.37, P=0.44), with positive interaction (Pint=0.05 and Pint=0.01, respectively). The number of patients with high CRUSADE scores needed to treat for harm for major bleeding and transfusion were 17 and 15, respectively, with 24-month rather than 6-month dual antiplatelet therapy; corresponding figures in the overall population were 67 and 71, respectively. CONCLUSIONS Our analysis suggests that the CRUSADE score predicts major bleeding similarly to ACUITY and better than HAS BLED in an all-comer population with percutaneous coronary intervention and potentially identifies patients at higher risk of hemorrhagic complications when treated with a long-term dual antiplatelet therapy regimen. CLINICAL TRIAL REGISTRATION URL: http://clinicaltrials.gov. Unique identifier: NCT00611286.
Resumo:
After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^
Resumo:
The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^
Resumo:
In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^
Resumo:
Though E2F1 is deregulated in most human cancers by mutations of the p16-cyclin D-Rb pathway, it also exhibits tumor suppressive activity. A transgenic mouse model overexpressing E2F1 under the control of the bovine keratin 5 (K5) promoter exhibits epidermal hyperplasia and spontaneously develops tumors in the skin and other epithelial tissues after one year of age. In a p53-deficient background, aberrant apoptosis in K5 E2F1 transgenic epidermis is reduced and tumorigenesis is accelerated. In sharp contrast, K5 E2F1 transgenic mice are resistant to papilloma formation in the DMBA/TPA two-stage carcinogenesis protocol. K5 E2F4 and K5 DP1 transgenic mice were also characterized and both display epidermal hyperplasia but do not develop spontaneous tumors even in cooperation with p53 deficiency. These transgenic mice do not have increased levels of apoptosis in their skin and are more susceptible to papilloma formation in the two-stage carcinogenesis model. These studies show that deregulated proliferation does not necessarily lead to tumor formation and that the ability to suppress skin carcinogenesis is unique to E2F1. E2F1 can also suppress skin carcinogenesis when okadaic acid is used as the tumor promoter and when a pre-initiated mouse model is used, demonstrating that E2F1's tumor suppressive activity is not specific for TPA and occurs at the promotion stage. E2F1 was thought to induce p53-dependent apoptosis through upregulation of p19ARF tumor suppressor, which inhibits mdm2-mediated p53 degradation. Consistent with in vitro studies, the overexpression of E2F1 in mouse skin results in the transcriptional activation of the p19ARF and the accumulation of p53. Inactivation of either p19ARF or p53 restores the sensitivity of K5 E2F1 transgenic mice to DMBA/TPA carcinogenesis, demonstrating that an intact p19ARF-p53 pathway is necessary for E2F1 to suppress carcinogenesis. Surprisingly, while p53 is required for E2F1 to induce apoptosis in mouse skin, p19ARF is not, and inactivation of p19ARF actually enhances E2F1-induced apoptosis and proliferation in transgenic epidermis. This indicates that ARF is important for E2F1-induced tumor suppression but not apoptosis. Senescence is another potential mechanism of tumor suppression that involves p53 and p19ARF. K5 E2F1 transgenic mice initiated with DMBA and treated with TPA show an increased number of senescence cells in their epidermis. These experiments demonstrate that E2F1's unique tumor suppressive activity in two-stage skin carcinogenesis can be genetically separated from E2F1-induced apoptosis and suggest that senescence utilizing the p19ARF-p53 pathway plays a role in tumor suppression by E2F1. ^
Resumo:
The importance of IGF-1/IGF-1R signaling is evident in human cancers including breast, colon, prostate, and lung which have been shown to overexpress IGF-1. Also, serum levels of IGF-1 have been identified as a risk factor for these cancers. IGF-1 has been primarily shown to mediate its mitogenic effects through signaling pathways such as MAPK and PI3K/Akt. In this regard, BK5.IGF-1 transgenic mice were generated and these mice displayed hyperplasia and hyperkeratosis in the epidermis. In addition, these mice were also found to have elevated MAPK, PI3K, and Akt activities. Furthermore, overexpression of IGF-1 in epidermis can act as a tumor promoter. BK5.IGF-1 transgenic mice developed papillomas after initiation with DMBA without further treatment with a tumor promoter such as TPA. Previous data has also shown that inhibition of the PI3K/Akt signaling pathway by the inhibitor LY294002 was able to reduce the number of tumors formed by IGF-1 mediated tumor promotion. The current studies presented demonstrate that Akt may be the critical effector molecule in IGF-1/IGF-1R mediated tumor promotion. We have found that inhibition of PI3K/Akt by LY294002 inhibits cell cycle components, particularly those associated with G1 to S phase transition including Cyclin D1, Cyclin E, E2F1, and E2F4, that are elevated in epidermis of BK5.IGF-1 transgenic mice. We have also demonstrated that Akt activation may be a central theme in early tumor promotion. In this regard, treatment with diverse tumor promoters such as TPA, okadaic acid, chrysarobin, and UVB was shown to activate epidermal Akt and its downstream signaling pathways after a single treatment. Furthermore, overexpression of Akt targeted to the basal cells of the epidermis led to hyperplasia and increased labeling index as determined by BrdU staining. These mice also had constitutively elevated levels of cell cycle components, particularly Cyclin D1, Cyclin E, E2F1, E2F4, and Mdm-2. These mice developed skin tumors following initiation with DMBA and were hypersensitive to the tumor promoting effects of TPA. Collectively, these studies provide evidence that Akt activation plays an important role in the process of mouse skin tumor promotion. ^
Resumo:
Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^
Resumo:
Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^
Resumo:
Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^
Resumo:
An initiation-promotion bioassay in CD-1 mice was used to examine the role of chronic irritation and inflammation in tumor promotion by petroleum middle distillates. A representative hydrodesulfurized middle distillate (API 81-07) was selected as the test article. Test groups (54 mice per group) were initiated once with 50 ug of 7,12-dimethylbenzanthracene (DMBA). Promotion with API 81-07 consisted of twice weekly treatments for 25 weeks with either 25 ul, 50 ul, 50 ul + daily treatment with 15 ug dexamethasone, 50 ul + post-application washings, and 100 ul. Three mice from each group were sacrificed at 21 day intervals (24 total per group). The skin from interim sacrificed (IS) mice was examined histopathologically for tumor, acanthosis, hyperkeratosis, pseudo-epitheliomatous hyperplasia, epidermal crusting, and subacute inflammation. In-life observations included examination of all mice for erythema and edema for 8 weeks following the first promotion treatment. Tumor incident at study termination was as follows: 25 ul (45%), 50 ul (43%), 50 ul + dexamethasone (0%), 50 ul + washing (70%), and 100 ul (81%). An overall correlation of $>$0.90 between tumor incidence and group means for acanthosis and hyperkeratosis was observed in IS mice at all intervals. Correlations of $<$0.75 were observed for other group mean histopathological parameters and tumor incidence. The overall correlation of group mean erythema and edema with tumor incident was $>$0.90. The results of this study support the hypothesis that induction of a lasting, albeit mild, hyperplasia is an essential, but not sufficient requirement, for tumor promotion. Furthermore, subacute inflammation does not appear to be a significant factor in tumor promotion by petroleum middle distillates. However, inflammation may be a factor in tumor progression. ^
Resumo:
In this thesis a mouse model was used to examine the effect of pubertal estrogen inhibition and a phytoestrogen-free diet on the development of mammary glands. The study question was does treatment with aromatase inhibitor during puberty increase susceptibility to breast cancer among cohorts that consumed a diet free of phytoestrogens. The study design consisted of a cohort of mice treated with aromatase inhibitor, letrozole, during puberty and a vehicular group that was used as a control. Both groups were fed a diet free of phytoestrogens from the time of weaning until sacrifice during adulthood. The study aimed to assess mammary gland development in terms of breast cancer risk. The methods employed in this research included morphological and histological analysis of mammary glands, as well as estradiol, RNA and protein analysis. The main finding of the study was that mice exposed to aromatase inhibitor during puberty developed mammary glands with specific characteristics suggestive of vulnerability to oncogenesis such as increased lateral branching, increased number of glands, increase ductal hyperplasia, and diminished expression of TGFβ and p27 protein levels. The conclusions suggest that puberty is a critical period in which the mammary gland is susceptible to environmental threats that may result in deleterious epigenetic effects leading to an increased breast cancer risk in adulthood. This study has several public health implications; the most significant is that environmental threats during puberty may result in adverse mammary gland development and that phytoestrogen sources in the diet are necessary for normal maturation of the mammary glands.^
Resumo:
The female reproductive tract (FRT) develops midway through embryogenesis, and consists of oviducts, uterine horns, cervix and upper part of the vagina. The uterine horns are composed of an epithelial layer, luminal (LE) and glandular epithelium (GE), surrounded by a mesenchymal layer, the stroma and myometrium. Interestingly, in most mammals the GE forms after birth and it only becomes fully differentiated as the female reaches sexual maturity. Uterine glands (UG) are made up of GE and are present in all mammals. They secrete nutrients, cytokines and several other proteins, termed histotroph, that are necessary for embryo implantation and development. Experiments in ewes and mice have revealed that females who lack UGs are infertile mainly due to impaired implantation and early pregnancy loss, suggesting that UGs are essential for fertility. Fortunately for us, UGs develop after birth allowing us to peer into the genetic mechanism of tubulogenesis and branching morphogenesis; two processes that are disrupted in various adenocarcinomas (cancer derived from glands). We created 3D replicas of the epithelium lining the FRT using optical projection tomography and characterized UG development in mice using lineagetracing experiments. Our findings indicate that mouse UGs develop as simple tubular structures and later grow multiple secretory units that stem from the main duct. The main aim of this project was to study the role of SOX9 in the UGs. Preliminary studies revealed that Sox9 is mostly found in the nucleus of the GE. vii This observation led to the hypothesis that Sox9 plays a role in the formation and/or differentiation of the GE. To study the role of Sox9 in UGs differentiation, we conditionally knocked out and overexpressed Sox9 in both the LE and GE using the progesterone receptor (Pgr) promoter. Overexpressing Sox9 in the uterine epithelium, parts of the stroma, and myometrium led to formation of multiple cystic structures inside the endometrium. Histological analysis revealed that these structures appeared morphologically similar to structures present in histological tissue sections obtained from patients with endometrial polyps. We have accounted for the presence of simple and complex hyperplasia with atypia, metaplasia, thick-walled blood vessels, and stromal fibrosis; all “hallmarks” that indicate overexpressing Sox9 leads to development of a polyp-like morphology. Therefore, we can propose the use of Sox9-cOE mice to study development of endometrial cystic lesions and disease progression into hyperplastic lesions.
Resumo:
The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.