934 resultados para Computer-aided diagnosis
Resumo:
Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.
Resumo:
Report for the scientific sojourn carried out at the Model-based Systems and Qualitative Reasoning Group (Technical University of Munich), from September until December 2005. Constructed wetlands (CWs), or modified natural wetlands, are used all over the world as wastewater treatment systems for small communities because they can provide high treatment efficiency with low energy consumption and low construction, operation and maintenance costs. Their treatment process is very complex because it includes physical, chemical and biological mechanisms like microorganism oxidation, microorganism reduction, filtration, sedimentation and chemical precipitation. Besides, these processes can be influenced by different factors. In order to guarantee the performance of CWs, an operation and maintenance program must be defined for each Wastewater Treatment Plant (WWTP). The main objective of this project is to provide a computer support to the definition of the most appropriate operation and maintenance protocols to guarantee the correct performance of CWs. To reach them, the definition of models which represent the knowledge about CW has been proposed: components involved in the sanitation process, relation among these units and processes to remove pollutants. Horizontal Subsurface Flow CWs are chosen as a case study and the filtration process is selected as first modelling-process application. However, the goal is to represent the process knowledge in such a way that it can be reused for other types of WWTP.
Resumo:
Freehand positioning of the femoral drill guide is difficult during hip resurfacing and the surgeon is often unsure of the implant position achieved peroperatively. The purpose of this study was to find out whether, by using a navigation system, acetabular and femoral component positioning could be made easier and more precise. Eighteen patients operated on by the same surgeon were matched by sex, age, BMI, diagnosis and ASA score (nine patients with computer assistance, nine with the regular ancillary). Pre-operative planning was done on standard AP and axial radiographs with CT scan views for the computer-assisted operations. The final position of implants was evaluated by the same radiographs for all patients. The follow-up was at least 1 year. No difference between both groups in terms of femoral component position was observed (p > 0.05). There was also no difference in femoral notching. A trend for a better cup position was observed for the navigated hips, especially for cup anteversion. There was no additional operating time for the navigated hips. Hip navigation for resurfacing surgery may allow improved visualisation and hip implant positioning, but its advantage probably will be more obvious with mini-incisions than with regular incision surgery.
Resumo:
Prenatal diagnosis of congenital lung anomalies has increased in recent years as imaging methods have benefitted from technical improvements. The purpose of this pictorial essay is to illustrate typical imaging findings of a wide spectrum of congenital lung anomalies on prenatal US and MRI. Moreover, we propose an algorithm based on imaging findings to facilitate the differential diagnosis, and suggest a follow-up algorithm during pregnancy and in the immediate postnatal period.
Resumo:
The differential diagnosis of urinary incontinence classes is sometimes difficult to establish. As a rule, only the results of urodynamic testing allow an accurate diagnosis. However, this exam is not always feasible, because it requires special equipment, and also trained personnel to lead and interpret the exam. Some expert systems have been developed to assist health professionals in this field. Therefore, the aims of this paper are to present the definition of Artificial Intelligence; to explain what Expert System and System for Decision Support are and its application in the field of health and to discuss some expert systems for differential diagnosis of urinary incontinence. It is concluded that expert systems may be useful not only for teaching purposes, but also as decision support in daily clinical practice. Despite this, for several reasons, health professionals usually hesitate to use the computer expert system to support their decision making process.
Resumo:
Decision to revascularize a patient with stable coronary artery disease should be based on the detection of myocardial ischemia. If this decision can be straightforward with significant stenosis or in non-significant stenosis, the decision with intermediate stenosis is far more difficult and require invasive measures of functional impact of coronary stenosis on maximal blood (flow fractional flow reserve=FFR). A recent computer based method has been developed and is able to measure FFR with data acquired during a standard coronary CT-scan (FFRcT). Two recent clinical studies (DeFACTO and DISCOVER-FLOW) show that diagnostic performance of FFRcT was associated with improved diagnostic accuracy versus standard coronary CT-scan for the detection of myocardial ischemia although FFRcT need further development.
Resumo:
BACKGROUND: Multislice CT (MSCT) combined with D-dimer measurement can safely exclude pulmonary embolism in patients with a low or intermediate clinical probability of this disease. We compared this combination with a strategy in which both a negative venous ultrasonography of the leg and MSCT were needed to exclude pulmonary embolism. METHODS: We included 1819 consecutive outpatients with clinically suspected pulmonary embolism in a multicentre non-inferiority randomised controlled trial comparing two strategies: clinical probability assessment and either D-dimer measurement and MSCT (DD-CT strategy [n=903]) or D-dimer measurement, venous compression ultrasonography of the leg, and MSCT (DD-US-CT strategy [n=916]). Randomisation was by computer-generated blocks with stratification according to centre. Patients with a high clinical probability according to the revised Geneva score and a negative work-up for pulmonary embolism were further investigated in both groups. The primary outcome was the 3-month thromboembolic risk in patients who were left untreated on the basis of the exclusion of pulmonary embolism by diagnostic strategy. Clinicians assessing outcome were blinded to group assignment. Analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00117169. FINDINGS: The prevalence of pulmonary embolism was 20.6% in both groups (189 cases in DD-US-CT group and 186 in DD-CT group). We analysed 855 patients in the DD-US-CT group and 838 in the DD-CT group per protocol. The 3-month thromboembolic risk was 0.3% (95% CI 0.1-1.1) in the DD-US-CT group and 0.3% (0.1-1.2) in the DD-CT group (difference 0.0% [-0.9 to 0.8]). In the DD-US-CT group, ultrasonography showed a deep-venous thrombosis in 53 (9% [7-12]) of 574 patients, and thus MSCT was not undertaken. INTERPRETATION: The strategy combining D-dimer and MSCT is as safe as the strategy using D-dimer followed by venous compression ultrasonography of the leg and MSCT for exclusion of pulmonary embolism. An ultrasound could be of use in patients with a contraindication to CT.
Resumo:
OBJECTIVES: Coarctation of the aorta is one of the most common congenital heart defects. Its diagnosis may be difficult in the presence of a patent ductus arteriosus, of other complex defects or of a poor echocardiographic window. We sought to demonstrate that the carotid-subclavian artery index (CSA index) and the isthmus-descending aorta ratio (I/D ratio), two recently described echocardiographic indexes, are effective in detection of isolated and complex aortic coarctations in children younger and older than 3 months of age. The CSA index is the ratio of the distal aortic arch diameter to the distance between the left carotid artery and the left subclavian artery. It is highly suggestive of a coarctation when it is <1.5. The I/D ratio defined as the diameter of the isthmus to the diameter of the descending aorta, suggests an aortic coarctation when it is less than 0.64. METHODS: This is a retrospective cohort study in a tertiary care children's hospital. Review of all echocardiograms in children aged 0-18 years with a diagnosis of coarctation seen at the author's institution between 1996 and 2006. An age- and sex-matched control group without coarctation was constituted. Offline echocardiographic measurements of the aortic arch were performed in order to calculate the CSA index and I/D ratio. RESULTS: Sixty-eight patients were included in the coarctation group, 24 in the control group. Patients with coarctation had a significantly lower CSA index (0.84+/-0.39 vs 2.65+/-0.82, p<0.0001) and I/D ratio (0.58+/-0.18 vs 0.98+/-0.19, p<0.0001) than patients in the control group. Associated cardiac defects and age of the child did not significantly alter the CSA index or the I/D ratio. CONCLUSIONS: A CSA index less than 1.5 is highly suggestive of coarctation independent of age and of the presence of other cardiac defects. I/D ratio alone is less specific than CSA alone at any age and for any associated cardiac lesion. The association of both indexes improves sensitivity and permits diagnosis of coarctation in all patients based solely on a bedside echocardiographic measurement.
Resumo:
A precise classification and an optimal understanding of tibial plateau fractures are the basis of a conservative treatment or adequate surgery. The aim of this prospective study is to determine the contribution of 3D CT to the classification of fractures (comparison with standard X-rays) and as an aid to the surgeon in preoperative planning and surgical reconstruction. Between November 1994 and July 1996, 20 patients presenting 22 tibial plateau fractures were considered in this study. They all underwent surgical treatment. The fractures were classified according to the Müller AO classification. They were all investigated by means of standard X-rays (AP, profile, oblique) and the 3D CT. Analysis of the results has shown the superiority of 3D CT in the planning (easier and more acute), in the classification (more precise), and in the exact assessment of the lesions (quantity of fragments); thereby proving to be of undeniable value of the surgeon.
Resumo:
OBJECTIVE: Gadolinium-enhanced pulmonary magnetic resonance angiography (MRA) can be an option in patients with a history of previous adverse reaction to iodinated contrast material and renal insufficiency. Radiation is also avoided. The aim of this study is to prospectively compare the diagnostic value of MRA with that of a diagnostic strategy, taking into account catheter angiography, computed tomography angiography (CTA), and lung scintigraphy [ventilation-perfusion (VQ)]. MATERIAL AND METHODS: Magnetic resonance angiography was done in 48 patients with clinically suspected pulmonary embolism (PE) using fast gradient echo coronal acquisition with gadolinium. Interpretation was done with native coronal images and multiplanar maximum intensity projection reconstructions. Results were compared to catheter angiography (n=15), CTA (n=34), VQ (n=45), as well as 6-12 months clinical follow-ups, according to a sequenced reference tree. RESULTS: The final diagnosis of PE was retained in 11 patients (23%). There were two false negatives and no false positive results with MRA. Computed tomography angiography resulted in no false negatives or false positives. Magnetic resonance angiography had a sensitivity of 82% and a specificity of 100%. CONCLUSION: In our study, pulmonary MRA had a sensitivity of 82% and a specificity of 100% for the diagnosis of PE, with slightly less sensitivity than CTA. In the diagnostic algorithm of PE, pulmonary MRA should be considered as an alternative to CTA when iodine contrast injection or radiation is a significant matter.
Resumo:
Clinical decision support systems are useful tools for assisting physicians to diagnose complex illnesses. Schizophrenia is a complex, heterogeneous and incapacitating mental disorder that should be detected as early as possible to avoid a most serious outcome. These artificial intelligence systems might be useful in the early detection of schizophrenia disorder. The objective of the present study was to describe the development of such a clinical decision support system for the diagnosis of schizophrenia spectrum disorders (SADDESQ). The development of this system is described in four stages: knowledge acquisition, knowledge organization, the development of a computer-assisted model, and the evaluation of the system's performance. The knowledge was extracted from an expert through open interviews. These interviews aimed to explore the expert's diagnostic decision-making process for the diagnosis of schizophrenia. A graph methodology was employed to identify the elements involved in the reasoning process. Knowledge was first organized and modeled by means of algorithms and then transferred to a computational model created by the covering approach. The performance assessment involved the comparison of the diagnoses of 38 clinical vignettes between an expert and the SADDESQ. The results showed a relatively low rate of misclassification (18-34%) and a good performance by SADDESQ in the diagnosis of schizophrenia, with an accuracy of 66-82%. The accuracy was higher when schizophreniform disorder was considered as the presence of schizophrenia disorder. Although these results are preliminary, the SADDESQ has exhibited a satisfactory performance, which needs to be further evaluated within a clinical setting.
Resumo:
In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.
Resumo:
Diagnosis of Hridroga (cardiac disorders) in Ayurveda requires the combination of many different types of data, including personal details, patient symptoms, patient histories, general examination results, Ashtavidha pareeksha results etc. Computer-assisted decision support systems must be able to combine these data types into a seamless system. Intelligent agents, an approach that has been used chiefly in business applications, is used in medical diagnosis in this case. This paper is about a multi-agent system named “Distributed Ayurvedic Diagnosis and Therapy System for Hridroga using Agents” (DADTSHUA). It describes the architecture of the DADTSHUA model .This system is using mobile agents and ontology for passing data through the network. Due to this, transport delay can be minimized. It is a system which will be very helpful for the beginning physicians to eliminate his ambiguity in diagnosis and therapy. The system is implemented using Java Agent DEvelopment framework (JADE), which is a java-complaint mobile agent platform from TILab.
Resumo:
OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.
Resumo:
All over the world, organizations are becoming more and more complex, and there’s a need to capture its complexity, so this is when the DEMO methodology (Design and Engineering Methodology for Organizations), created and developed by Jan L. G. Dietz, reaches its potential, which is to capture the structure of business processes in a coherent and consistent form of diagrams with their respective grammatical rules. The creation of WAMM (Wiki Aided Meta Modeling) platform was the main focus of this thesis, and had like principal precursor the idea to create a Meta-Editor that supports semantic data and uses MediaWiki. This prototype Meta-Editor uses MediaWiki as a receptor of data, and uses the ideas created in the Universal Enterprise Adaptive Object Model and the concept of Semantic Web, to create a platform that suits our needs, through Semantic MediaWiki, which helps the computer interconnect information and people in a more comprehensive, giving meaning to the content of the pages. The proposed Meta-Modeling platform allows the specification of the abstract syntax i.e., the grammar, and concrete syntax, e.g., symbols and connectors, of any language, as well as their model types and diagram types. We use the DEMO language as a proofof-concept and example. All such specifications are done in a coherent and formal way by the creation of semantic wiki pages and semantic properties connecting them.