919 resultados para Chronic Lung Disease


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irreversible tissue damage within the cystic fibrosis (CF) lung is mediated by proteolytic enzymes during an inflammatory response. Serine proteinases, in particular neutrophil elastase (NE), have been implicated however, members of the cysteine proteinase family may also be involved. The aim of this study was to determine cathepsin B and S levels in cystic fibrosis (CF) sputum and to assess any relationship to recognized markers of inflammation such as sputum NE, interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-a), urine TNF receptor 1 (TNFr1), plasma IL-6, and serum C-reactive protein (CRP). Proteinase activities were measured in the sputum of 36 clinically stable CF patients using spectrophotometric and fluorogenic assays. Immunoblots were also used to confirm enzyme activity data. All other parameters were measured by ELISA. Patients had a mean age of 27.2 (8.2) years, FEV. of 1.6 (0.79) L and BMI of 20.7 (2.8). Both cathepsin B and S activities were detected in all samples, with mean concentrations of 18.0 (13.5)?µg/ml and 1.6 (0.88)?µg/ml, respectively and were found to correlate not only with each other but with NE, TNF-a and IL-8 (in all cases .?<?0.05). Airway cathepsin B further correlated with circulatory IL-6 and CRP however, no relationship for either cathepsin was observed with urine TNFr1. This data indicates that cathepsin B and S may have important roles in the pathophysiology of CF lung disease and could have potential as markers of inflammation in future studies. Pediatr. Pulmonol. 2010; 45:860–868.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF- production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is the most widespread complication of diabetes mellitus and a major cause of blindness in the working population of developed countries. The clinicopathology of the diabetic retina has been extensively studied, although the relative contribution of the various biochemical and molecular sequelae of hyperglycemia remains ill defined. Many neural and microvascular abnormalities occur in the retina of short-term diabetic animals but it remains uncertain how closely these acute changes relate to chronic human disease. It is important to determine the relationship between alterations observed within the first weeks or months in short-term aminal models, and human disease, where clinically manifest retinopathy occurs only after durations of diabetes measured in years. This review is focused on the retinal microvasculature, although it should be appreciated that pathological changes in this system often occur in parallel with abnormalities in the neural parenchyma that may be derivative or even causal. Nevertheless, it is useful to reevaluate the microvascular lesions that are manifest in the retina during diabetes in humans and long-term animal models, since in addition to providing useful clues to the pathogenic basis of DR as a disease entity, it is in the deterrence of such changes that the efficacy of any novel treatment regimes will be measured. In particular, an emphasis will be placed on the relatively unappreciated role of arteriolar dysfunction in the clinical manifestations and pathology of this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Routine assessment of health-related quality of life (HRQoL) can be time consuming and burdensome for a person with stroke. Therefore the aim of this study was to develop and test a brief instrument for assessing HRQoL among people with stroke. The Quality of Life after Stroke Scale (QLASS) was constructed from items within the Quality of Life Index-Stroke Version and the Chronic Respiratory Disease Questionnaire. It was administered to 92 people with stroke at three points in time: immediately after discharge from hospital, 6 months and 12 months later. Results suggest that the QLASS has 19 items which represent three factors: emotional functioning, mastery and fatigue which correlate with valid measures of health status and activities of daily living. The QLASS is proposed as a brief, valid HRQoL tool for use among people with stroke.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Vitamin D and its analogues are reported to have renoprotective effects in chronic kidney disease including diabetic nephropathy (DN). Vitamin D3 is converted to 1,25(OH) D3 by CYP2R1 and CYP27B1. The biological action of 1,25(OH) D3 is mediated via its receptor. VDR, CYP27B1 or CYP2R1 gene variants could modify the biological activity of vitamin D3. We have conducted the first case- control association study to determine the relationship between polymorphisms in VDR, CYP27B1 and CYP2R1 genes, and the risk of DN in individuals with type 1 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Propionibacterium acnes is an anaerobic Gram-positive bacterium that forms part of the normal human cutaneous microbiota and is thought to play a central role in acne vulgaris, a chronic inflammatory disease of the pilosebaceous unit (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). Here we present the whole genome sequence of P. acnes type IB strain 6609, which was recovered from a skin sample from a woman with no recorded acne history and is thus considered a nonpathogenic strain (I. Nagy, Microbes Infect. 8:2195-2205, 2006).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a Gram-negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane-bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP-bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP-bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS-mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.