997 resultados para Chl a
Resumo:
During Ocean Drilling Program Leg 188 to Prydz Bay, East Antarctica, several of the shipboard scientists formed the High-Resolution Integrated Stratigraphy Committee (HiRISC). The committee was established in order to furnish an integrated data set from the Pliocene portion of Site 1165 as a contribution to the ongoing debate about Pliocene climate and climate evolution in Antarctica. The proxies determined in our various laboratories were the following: magnetostratigraphy and magnetic properties, grain-size distributions (granulometry), near-ultraviolet, visible, and near-infrared spectrophotometry, calcium carbonate content, characteristics of foraminifer, diatom, and radiolarian content, clay mineral composition, and stable isotopes. In addition to the HiRISC samples, other data sets contained in this report are subsets of much larger data sets. We included these subsets in order to provide the reader with a convenient integrated data set of Pliocene-Pleistocene strata from the East Antarctic continental margin. The data are presented in the form of 14 graphs (in addition to the site map). Text and figure captions guide the reader to the original data sets. Some preliminary interpretations are given at the end of the manuscript.
Resumo:
The ecology of arctic lakes is strongly influenced by climate-generated variations in snow coverage and by the duration of the ice-free period, which, in turn, affect the physical and chemical conditions of the lakes (Wrona et al., 2005, http://www.acia.uaf.edu/PDFs/ACIA_Science_Chapters_Final/ACIA_Ch08_Final.pdf). Most arctic lakes are characterised by a long period (8-10 months) of ice-cover, cold water and low algal biomass. The water temperature and nutrient concentrations, and most probably the nutrient input from the catchments, are closely related to the duration of snow- and ice-cover in the lakes. In years when the ice-out is late, - that is, in late July, - phytoplankton photosynthesis is limited by the lack of light and nutrients. Less food is then available to the next link in the food chain, such as copepods and daphnids, with implication on their growth rates.
Resumo:
Numerous and variable silty-sandy siliciclastic turbidites were observed in Neogene pelagic sediments (late Miocene to Holocene) at Site 657: (1) thick-bedded, coarse-grained and thin-bedded, fine-grained turbidites; and (2) turbidites composed of eolian dune sand and shallow-water bioclasts or of fluvial-sand or mixed sandy component assemblages. The stratigraphic distribution of these turbidites indicates five periods during which climatic conditions and material sources change. Turbidite occurrence prior to 6.2 Ma (late Miocene) is sparse; the deposits contain coarse and fine-grained turbidites with quartz grains of eolian or mixed origin suggesting the existence of arid conditions at about 8.5 and 6.5 Ma. A coarse-grained turbidite of fluvial origin, recording a humid climate, occurs at about 6.2 Ma. During the early Pliocene, turbidites are frequent (15/Ma); they contain only fine-grained sequences comprising material of mixed origin, which indicates a more humid climate perhaps. The late Pliocene starts with rare coarse-grained turbidites of wind-transported sand while the uppermost Pliocene deposits show a higher frequency of fine-grained sequences (10/0.7 Ma) composed mainly of fluvial material. During the early Pleistocene, similar high turbidite frequency was observed (20/1.3 Ma) but with a total lack of eolian supply. During the last 0.7 Ma, the frequency decreases and the sequences are characterized by highly variable sediment components that could be related to strong variations of climatic conditions. The sedimentary characteristics of turbidites are mainly controlled by sediment source and climate. The frequency must be influenced by sea-level variations, by cyclic processes of climatic origin, and possibly by variations in the continental slope morphology. Clay mineral assemblages suggest a south Saharan source of terrigenous material during the late Miocene and the Pliocene and a northwest Saharan source during the Pleistocene.
Resumo:
The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.
Resumo:
Aerosols collected by net method over the Western Pacific were investigated. Distribution of eolian material, its mineral and chemical compositions are controlled by the climatic and circumcontinental zonalities. It was stated that Fe and Mn were bound with mineral components of aerosols, while trace elements are bound with organogenic matter. Fluxes of aerosols and their components on the ocean surface were determined.
Resumo:
In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.
Resumo:
A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
During 2006, the SHALDRIL program recovered cores of Eocene through Pliocene material at four locations in the northwestern Weddell Sea, each representing a key period in the evolution of the Antarctic Peninsula ice cap. The recovered cores are not continuous, yet they provide a record of climate change with samples from the late Eocene, late Oligocene, middle Miocene, and early Pliocene and represent the only series of samples recovered from the northwestern Weddell Sea and spanning the Cenozoic and the initial growth of the peninsula ice cap. Late Eocene sediments sampled in the James Ross Basin are typically characterized by very dark greenish-gray muddy fine sand with some preserved burrowing and are interpreted to represent a shallow water continental shelf setting. Rare dropstones, primarily of well-cemented sandstones and minor ice-rafted material consisting of angular grains with glacially influenced surface features record the onset of mountain glaciation, the earliest such evidence in the region. The remaining cores were collected on the Joinville Plateau to the north of the James Ross Basin. The late Oligocene sediments consist of dark gray sandy mud with some clay lenses and many burrows, likely representing a distal delta or shelf setting. This core contains only very few and small dropstones, and the individual grains show decreased angularity and fewer glacial surface features relative to late Eocene deposits. The middle Miocene strata are composed of pebbly gray diamicton, representing proximal glacimarine sediments. The lower Pliocene section also contains many ice-rafted pebbles but is dominated by sandy units rather than diamicton and is interpreted to represent a current-winnowed deposit, similar to the modern contour current-influenced sediments of the region.
Resumo:
A joint mesocosm experiment took place in February/March 2013 in the bay of Villefranche in France as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 2 weeks period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseavillefranche2013.obs-vlfr.fr.
Resumo:
A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.
Resumo:
Phytoplankton and copepod succession was investigated in Disko Bay, western Greenland from February to July 2008. The spring phytoplankton bloom developed immediately after the breakup of sea ice and reached a peak concentration of 24 mg chl a/m**3 2 wk later. The bloom was analyzed during 3 phases: the developing, the decaying, and the post-bloom phases. Grazing impact by the copepod community was assessed by 4 methods; gut fluorescence, in situ faecal pellet production, and egg and faecal pellet production from bottle incubations. Calanus spp. dominated the mesozooplankton community. They were present from the initiation of the bloom but only had a small grazing impact on the phytoplankton. Consequently, there was a close coupling between the spring phytoplankton bloom and sedimentation of particulate organic carbon (POC). Out of 1836 ±180 mg C/m**2/d leaving the upper 50 m, 60 % was phytoplankton based carbon (PPC). The composition and quality of the sedimenting material changed throughout the bloom succession from PPC dominance in the initial phase with a POC/PON ratio close to 6.6 to a dominance of amorphous detritus with a higher POC/PON ratio (>10) in the post-bloom phase. The succession and fate of the phytoplankton spring bloom was controlled by nitrogen limitation and subsequent sedimentation, while grazing-mediated flux by the Calanus-dominated copepod community played a minor role in the termination of the spring bloom of Disko Bay.