860 resultados para Cermet-carbon steel joints
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.
Resumo:
When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.
Resumo:
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
Resumo:
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above-ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits in order to achieve systematically maximal co-benefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-making rules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models in order to find restoration solutions that maximize simultaneously biodiversity, carbon stocks and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration and other socio-economic co-benefits under global change.
Resumo:
A series of NR composites filled with modified kaolinite (MK), carbon black (CB) and the hybrid fillercontained MK and CB, were prepared by melt blending. The microstructure, combustion and thermaldecomposition behaviors of NR composites were characterized by TEM, XRD, infrared spectroscopy, conecalorimeter test (CCT) and thermal-gravimetric analysis (TG). The results show that the filler hybridizationcan improve the dispensability and shape of the kaolinite sheets in the rubber matrix and change theinterface bond between kaolinite particles and rubber molecules. NR-3 filled by 10 phr MK and 40 phr CBhas the lowest heat release rate (HRR), mass loss rate (MLR), total heat release (THR), smoke productionrate (SPR) and the highest char residue among all the NR composites. Therefore, the hybridization ofthe carbon black particles with the kaolinite particles can effectively improve the thermal stability andcombustion properties of NR composites.
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.
Resumo:
Exploring advanced materials for efficient capture and separation of CO2 is important for CO2 reduction and fuel purification. In this study, we have carried out first-principles density functional theory calculations to investigate CO2, N2, CH4, and H2 adsorption on the amphoteric regioselective B80 fullerene. Based on our calculations, we find that CO2 molecules form strong interactions with the basic sites of the B80 by Lewis acid–base interactions, while there are only weak bindings between the other three gases (N2, CH4, and H2) and the B80 adsorbent. The study also provides insight into the reaction mechanism of capture and separation of CO2 using the electron deficient B80 fullerene.
Resumo:
We describe a novel and facile approach to covalently graft molecules containing stable free radicals onto carbon surfaces including graphene, carbon nanotubes, glassy carbon and carbon fibres. The new technique employs a stable aryl nitroxide radical diazonium tetrafluoroborate salt. The salt may be isolated and added to carbon surfaces in solution, suspension or electrochemically and represents a convenient, versatile and highly efficient means to adorn graphitic materials with large numbers of free radical spin systems
Resumo:
Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.
Resumo:
This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.
Resumo:
A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.