992 resultados para Cell hypoxia
Resumo:
The aim of this study was to evaluate the response of osteoblastic cells to the composite of Ricinus cominunis polyurethane (RCP) and alkaline phosphatase (ALP) incubated in synthetic body fluid (SBF). RCP pure (RCPp) and RCP blended with ALP 6 mg/mL polymer (RCP+ALP) were incubated in SBF for 17 days. Four groups of RCP were tested: RCPp, RCP+ALP, and RCPp and RCP+ALP incubated in SBF (RCPp/SBF and RCP+ALP/SBF). Stem cells from rat bone marrow were cultured in conditions that allowed osteoblastic differentiation on RCP discs and were evaluated: cell adhesion, culture growth, cell viability, total protein content, ALP activity, and bone-like nodule formation. Data were compared by ANOVA or Kruskal-Wallis test. The group RCP-A P was highly cytotoxic and, therefore, was not considered here. Cell adhesion (p = 0.14), culture growth (p = 0.39), viability (p = 0.46) and total protein content (p = 0.12) were not affected by either RCP composition or incubation in SBE ALP activity was affected (p = 0.0001) as follows: RCPp < RCPp/SBF < RCP+ALP/SBF. Bone-like nodule formation was not observed on all evaluated groups. The composite RCP+ALP prior to SBF incubation is cytotoxic and must not be considered as biomaterial, but the incorporation of ALP to the RCP followed by SBF incubation could be a useful alternative to improve the biological properties of the RCP. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb, Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC acid MCC, we wished to determine if this was also the case in MCC, Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and I on 9p. No loss of heterozygosity (LO H) was peen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p, Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined, Half of all informative cases had LOH at D95168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168, A second region (InFNA-D9S126) showed L0H in 10(44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all Il tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p 14' antibody, These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus. (C) 2001 Wiley-Liss, Inc.
Resumo:
It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia and hypercapnia. We assessed the role of ionotropic glutamate receptors in the rostral MR (rMR) in the respiratory responses to hypoxia and hypercapnia by measuring pulmonary ventilation (V(E)) and body temperature (Tb) of male Wistar rats before and after microinjecting Kynurenic acid (KY, an ionotropic glutamate receptors antagonist, 0.1 mM) into the rMR followed by 60 min of hypoxia (7% O(2)) or hypercapnia exposure (7% CO(2)). Compared to the control group, the ventilatory response to hypoxia was attenuated in animals treated with KY intra-rMR, however the ventilatory response to hypercapnia increased significantly. No differences in Tb among groups were observed during hypoxia or hypercapnia. These data suggest that the glutamate acting on ionotropic receptors in the rMR exerts an excitatory modulation on hyperventilation induced by hypoxia but an inhibitory modulation on the hypercapnia-induced hyperpnea. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Currently, the combination of cisplatin and gemcitabine is considered a standard chemotherapeutic protocol for bladder cancer. However, the mechanism by which these drugs act on tumor cells is not completely understood. The aim of the present study was to investigate the effects of these two antineoplastic drugs on the apoptotic index and cell cycle kinetics of urinary bladder transitional carcinoma cell lines with wild-type or mutant TP53 (RT4: wild type for TP53; 5637 and T24: mutated TP53). Cytotoxicity, cell survival assays, clonogenic survival assays and flow cytometric analyses for cell cycle kinetics and apoptosis detection were performed with three cell lines treated with different concentrations of cisplatin and gemcitabine. G(1) cell cycle arrest was observed in the three cell lines after treatment with gemcitabine and gemcitabine plus cisplatin. A significant increase in cell death was also detected in all cell lines treated with cisplatin or gemcitabine. Lower survival rates occurred with the combined drug protocol independent of TP53 status. TP53-wild type cells (RT4) were more sensitive to apoptosis than were mutated TP53 cells when treated with cisplatin or gemcitabine. Concurrent treatment with cisplatin and gemcitabine was more effective on transitional carcinoma cell lines than either drug alone; the drug combination led to a decreased cell survival that was independent of TP53 status. Therefore, the synergy between low concentrations of cisplatin and gemcitabine may have clinical relevance, as high concentrations of each individual drug are toxic to whole organisms.
Resumo:
There are at present disparate published results with regard to the relevance of the Bcl-2 gene family, levels of apoptosis, and cell proliferation in the development and progression of renal cell carcinoma (RCC). The present study v analyses the interrelationship between the expression of representatives of the anti-apoptotic (Bcl-2, Bcl-X-L) or pro-apoptotic (Bax) Bcl-2 proteins, incidence of apoptosis, and mitosis in a selected small group of 22 graded RCCs that had paired normal renal tissue, or non-neoplastic tissue in the renal biopsy specimen. The cases were chosen to determine the feasibility of measuring these parameters as potential surrogate markers of progression or treatment failure of the cancers. The results showed that in approximately 50% of the RCCs, where Bcl-2 and/or Bcl-X-L expression was high, apoptosis it-as not detected, and when expression of these proteins was low or not found, increased levels of apoptosis were seen. In most of the remaining 50% of samples, high levels of Bcl-X-L but not Bcl-2 were negatively correlated with low levels of apoptosis (Bcl-X-L: r = -0.437, P = 0.07 and Bcl-2: r = + 0.560, P = 0.02). For the same group of samples, high Bax expression was found in association with apoptosis (r = + 0.578, P = 0,02). A novel finding was an association between low expression of Bcl-2 an/or Bcl-X-L in normal tissue and the level of expression of these proteins in the RCCs, an intrinsic variation that may be an individual patient factor. The results indicate that, in RCCs with increased expression of Bcl-2 and/or Bcl-X-L, levels of apoptosis are minimal and these combined factors may assist in progression of the cancers and resistance to treatments.
Resumo:
Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 pm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 mu mol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT (TM) PicoGreen (R) dsDNA detection kit at baseline and 120 min after APT. Results: APT produced dose-dependent increases in plasma DNA concentrations. which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro. Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Th. To this end, Th of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 mu g/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) cyclic (CTAP; 0.1 and 1.0 mu g/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 mu g/100 nL/animal) or saline (vehicle, 100 nu animal), during normoxia and hypoxia (7% inspired O(2)). Under normoxia, no effect of opioid antagonists on Th was observed. Hypoxia induced Th to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Th during hypoxia but caused a longer latency for the return of Th to the normoxic values just after low O(2) exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Th during hypoxia while the mu and delta receptors are involved in the increase of Th during normoxia post-hypoxia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Resumo:
The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
In the field of regenerative medicine, nanoscale physical cuing is clearly becoming a compelling determinant of cell behavior. Developing effective methods for making nanostructured surfaces with well-defined physicochemical properties is thus mandatory for the rational design of functional biomaterials. Here, we demonstrate the versatility of simple chemical oxidative patterning to create unique nanotopographical surfaces that influence the behavior of various cell types, modulate the expression of key determinants of cell activity, and offer the potential of harnessing the power of stem cells. These findings promise to lead to a new generation of improved metal implants with intelligent surfaces that can control biological response at the site of healing.
Resumo:
Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009
Resumo:
Nitric oxide (NO) is thought to play a key role in the development of hypoxia-induced anapyrexia in mammals, acting on the preoptic region of the anterior hypothalamus to activate autonomic heat loss responses. Regarding behavioral thermoregulation, no data exists for NO modulation/mediation of thermoregulatory behavior changes during hypoxia. Therefore, we tested the hypothesis that NO is involved in the preferred body temperature (Tb) reduction in the hypoxic toad Chaunus schneideri (formerly Bufo paracnemis), a primarily behavioral thermoregulator. Toads equipped with a temperature probe were placed in a thermal gradient chamber, and preferred Tb was monitored continuously. We analyzed the effect of intracerebroventricular injections of the nonselective NO synthase inhibitor L-NMMA (200, 400 and 800 microg per animal) or mock cerebrospinal fluid (mCSF, vehicle) on the preferred Tb of toads. No significant difference in preferred Tb was observed after L-NMMA treatments. Another group of toads treated with 2 mg kg(-1) (400 microg per animal) of L-NMMA or mCSF was submitted to hypoxia (3% inspired 02) for 8 h. The vehicle group showed a reduction of preferred Tb, a response that was inhibited by L-NMMA. A 3rd group of hypoxic animals was injected with Ringer or L-NMMA (2 mg kg(-1)) into the lymph sac and both treatments induced no change in the anapyretic response to hypoxia. These results indicate that NO acting on the central nervous system has an excitatory role for the development of hypoxia-induced anapyrexia in toads. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.