969 resultados para Catanionic mixtures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante as últimas décadas, os materiais compósitos têm substituído com sucesso os materiais tradicionais em muitas aplicações de engenharia, muito devido às excelentes propriedades que se conseguem obter com a combinação de materiais diferentes. Nos compósitos reforçados com fibras longas ou contínuas tem-se verificado, ao longo dos últimos anos, um aumento do uso de matrizes termoplásticas, fruto de várias vantagens associadas, como o facto de serem bastante mais ecológicas, comparativamente às termoendurecíveis. No entanto, este aumento está muito dependente do desenvolvimento de novas tecnologias de processamento, pois a elevada viscosidade dos termoplásticos, comparativamente aos termoendurecíveis, dificulta significativamente o processo. Muitos equipamentos de produção de termoplásticos são resultado de adaptações de equipamentos de produção de termoendurecíveis, onde normalmente é necessário adicionar fornos de pré-aquecimento. Neste trabalho, pretendeu-se produzir pré-impregnados de fibras contínuas com matriz termoplástica, por deposição a seco de polímero em pó sobre fibras de reforço (denominados por towpreg) para, posteriormente, serem transformados por pultrusão e caracterizados. As matérias-primas utilizadas foram: Polipropileno (PP) como matriz termoplástica e fibra de carbono como reforço. Por forma a melhorar as propriedades finais do compósito, foram otimizadas as condições de processamento na produção dos towpregs, estudando-se a influência da variação dos parâmetros de processamento no teor de polímero presente nestes, tendo como objetivo teores mássicos de polímero superiores a 30%. A condição ótima e a influência dos parâmetros de processamento foram obtidas com o auxílio do Método de Taguchi. Os perfis produzidos por pultrusão foram sujeitos a ensaios de flexão, de forma a obter as suas propriedades quando sujeitos a esse tipo de esforço. Foram também realizados ensaios de calcinação de forma a obter as frações mássicas de fibra e polímero presentes no compósito final. Sabidas as frações mássicas, converteramse em frações volúmicas e obtiveram-se as propriedades teoricamente esperadas através da Lei das Misturas e compararam-se com as obtidas experimentalmente. As propriedades obtidas foram também comparadas com as de outros compósitos pultrudidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Engenharia Biomédica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain the Master Degree in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation for the Degree of Master in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work was the development of polymeric structures, gel and films, generated from the dissolution of the Chitin-Glucan Complex (CGC) in biocompatible ionic liquids for biomedical applications. Similar as chitin, CGC is only soluble in some special solvents which are toxic and corrosive. Due to this fact and the urgent development of biomedical applications, the need to use biocompatible ionic liquids to dissolve the CGC is indispensable. For the dissolution of CGC, the biocompatible ionic liquid used was Choline acetate. Two different CGC’s, KiOnutrime from KitoZyme and biologically produced CGC from Faculdade de Ciencias e Tecnologia (FCT) - Universidade Nova de Lisboa, were characterized in order to develop biocompatible wound dressing materials. The similar result is shown in term of the ratio of chitin:glucan, which is 1:1.72 for CGC-FCT and 1:1.69 for CGC-Commercial. For the analysis of metal element content, water and inorganic salts content and protein content, both polymers showed some discrepancies, where the content in CGC-FCT is always higher compared to the commercial one. The different characterization results between CGC-FCT and CGC-Commercial could be addressed to differences in the purification method, and the difference of its original strain yeast, whereas CGC-FCT is derived from P.pastoris and the commercial CGC is from A.niger. This work also investigated the effect of biopolymers, temperature dissolution, non-solvent composition on the characteristics of generated polymeric structure with biocompatible ionic liquid. The films were prepared by casting a polymer mixture, immersion in a non-solvent, followed by drying at ambient temperature. Three different non-solvents were tested in phase inversion method, i.e. water, methanol, and glycerol. The results indicate that the composition of non-solvent in the coagulation bath has great influence in generated polymeric structure. Water was found to be the best coagulant for producing a CGC polymeric film structure. The characterizations that have been done include the analysis of viscosity and viscoelasticity measurement, as well as sugar composition in the membrane and total sugar that was released during the phase inversion method. The rheology test showed that both polymer mixtures exhibit a non- Newtonian shear thinning behaviour. Where the viscosity and viscoelasticity test reveal that CGCFCT mixture has a typical behaviour of a viscous solution with entangled polymer chains and CGCCommercial mixture has true gel behaviour. The experimental results show us that the generated CGC solution from choline acetate could be used to develop both polymeric film structure and gel. The generated structures are thermally stable at 100° C, and are hydrophilic. The produced films have dense structure and mechanical stabilities against puncture up to 60 kPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 123 stool specimens collected in Teresina, Piauí between 1994 and 1996, from 0 to 2-year-old children with diarrhea, were used for this study. Molecular characterization of the G and P rotavirus genotypes was performed using the reverse transcriptase polymerase chain reaction. The following results were obtained for the P genotypes: P[8] (17. 1%), P[1] (4. 9%), P[4] (3. 3%), P[6, M37] (2. 4%) and mixtures (27. 6%). The P[1]+P[8] mixture was found in 19. 5% of the samples. For the G genotypes, the results were: G1 (25. 2%), G5 (13. 8%), G2 (2. 5%), G4 (2. 5%), G9 (0. 8%) and mixtures (41. 5%). G1+G5 was the mixture most frequently found (12. 1%). Our results showed unusual combinations such as P[1]G5 and P[1]+P[8]G5. The high percentage of mixtures and unusual combinations containing mixtures of human and animal rotavirus genotypes strongly suggests the possibility of gene reassortment and interspecies transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their toxicity, especially their carcinogenic potential, polycyclic aromatic hydrocarbons (PAHs) became priority pollutants in biomonitoring programmes and environmental policy, such as the European Water Framework Directive. The model substances tested in this study, namely benzo[b]fluoranthene (B[b]F), considered potentially carcinogenic to humans and an effector carcinogenic PAH to wildlife, and phenanthrene (Phe), deemed a non-carcinogenic PAH, are common PAHs in coastal waters, owning distinct properties reflected in different, albeit overlapping, mechanisms of toxicity. Still, as for similar PAHs, their interaction effects remain largely unknown. In order to study the genotoxic effects of caused by the interaction of carcinogenic and non-carcinogenic PAHs, and their relation to histopathological alterations, juvenile sea basses, Dicentrarchus labrax, a highly ecologically- and economically-relevant marine fish, were injected with different doses (5 and 10 μg.g-1 fish ww) of the two PAHs, isolated or in mixture, and incubated for 48 h. Individuals injected with B[b]F and the PAH mixture exhibited higher clastogenic/aneugenic effects and DNA strand breakage in blood cells, determined through the erythrocytic nuclear abnormalities (ENA) and Comet assays, respectively. Also, hepatic histopathological alterations were found in all animals, especially those injected with B[b]F and the PAH mixture, relating especially to inflammation. Still, Phe also exhibited genotoxic effects in sea bass, especially in higher doses, revealing a very significant acute effect that was accordant with the Microtox test performed undergone in parallel. Overall, sea bass was sensitive to B[b]F (a higher molecular weight PAH), likely due to efficient bioactivation of the pollutant (yielding genotoxic metabolites and reactive oxygen species), when compared to Phe, the latter revealing a more significant acute effect. The results indicate no significant additive effect between the substances, under the current experimental conditions. The present study highlights the importance of understanding PAH interactions in aquatic organisms, since they are usually present in the aquatic environment in complex mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing.