977 resultados para Carnival plays.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LOB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LOB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vocalization generated by the application of a noxious stimulus is an integrative response related to the affective-motivational component of pain. The rostral ventromedial medulla (RVM) plays an important role in descending pain modulation, and opiates play a major role in modulation of the antinociception mediated by the RVM. Further, it has been suggested that morphine mediates antinociception indirectly, by inhibition of tonically active GABAergic neurons. The current study evaluated the effects of the opioids and GABA agonists and antagonists in the RVM on an affective-motivational pain model. Additionally, we investigated the opioidergic-GABAergic interaction in the RVM in the vocalization response to noxious stimulation. Microinjection of either morphine (4.4 nmo1/0.2 mu l) or bicuculline (0.4 nmo1/0.2 mu l) into the RVM decreased the vocalization index, whereas application of the GABA(A) receptor agonist, musci-mol (0.5 nmo1/0.2 mu l) increased the vocalization index during noxious stimulation. Furthermore, prior microinjection of either the opioid antagonist naloxone (2.7 nmo1/0.2 mu l) or muscimol (0.25 nmo1/0.2 mu l) into the RVM blocked the reduction in vocalization index induced by morphine. These observations suggest an antinociceptive and pro-nociceptive role of the opioidergic and GABAergic neurotransmitters in the RVM, respectively. Our data show that opioids have an antinociceptive effect in the RVM, while GABAergic neurotransmission is related to the facilitation of nociceptive responses. Additionally, our results indicate that the antinociceptive effect of the opioids in the RVM could be mediated by a disinhibition of tonically active GABAergic interneurons in the downstream projection neurons of the descending pain control system; indicating an interaction between the opioidergic and GABAergic pathways of pain modulation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Costa-Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol 103: 2095-2106, 2010. First published February 17, 2010; doi: 10.1152/jn.00802.2009. For a better understanding of the processing at the nucleus tractus solitarius (NTS) level of the autonomic and respiratory responses to peripheral chemoreceptor activation, herein we evaluated the role of glutamatergic neurotransmission in the intermediate (iNTS) and caudal NTS (cNTS) on baseline respiratory parameters and on chemoreflex-evoked responses using the in situ working heart-brain stem preparation (WHBP). The activities of phrenic (PND), cervical vagus (cVNA), and thoracic sympathetic (tSNA) nerves were recorded before and after bilateral microinjections of kynurenic acid (Kyn, 5 nmol/20 nl) into iNTS, cNTS, or both simultaneously. In WHBP, baseline sympathetic discharge markedly correlated with phrenic bursts (inspiration). However, most of sympathoexcitation elicited by chemoreflex activation occurred during expiration. Kyn microinjected into iNTS or into cNTS decreased the postinspiratory component of cVNA and increased the duration and frequency of PND. Kyn into iNTS produced no changes in sympathoexcitatory and tachypneic responses to peripheral chemoreflex activation, whereas into cNTS, a reduction of the sympathoexcitation, but not of the tachypnea, was observed. The pattern of phrenic and sympathetic coupling during the chemoreflex activation was an inspiratory-related rather than an expiratory-related sympathoexcitation. Kyn simultaneously into iNTS and cNTS produced a greater decrease in postinspiratory component of cVNA and increase in frequency and duration of PND and abolished the respiratory and autonomic responses to chemoreflex activation. The data show that glutamatergic neurotransmission in the iNTS and cNTS plays a tonic role on the baseline respiratory rhythm, contributes to the postinspiratory activity, and is essential to expiratory-related sympathoexcitation observed during chemoreflex activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we evaluated the role of ionotropic glutamate receptors and purinergic P2 receptors in the caudal commissural NTS (cNTS) on the modulation of the baseline respiratory frequency (fR), and on the tachypneic response to chemoreflex activation in awake rats. The selective antagonism of ionotropic glutamate receptors with kynurenic acid (2 nmol/50 nl) in the cNTS produced a significant increase in the baseline fR but no changes in the tachypneic response to chemoreflex activation. The selective antagonism of purinergic P2 receptors by PPADS (0.25 nmol/50 nl) in the cNTS produced no changes in the baseline fR or in the tachypneic response to chemoreflex activation. The data indicate that glutamate acting on ionotropic receptors in the cNTS plays a inhibitory role on the modulation of the baseline fR but had no effect on the tachypneic response to chemoreflex activation, while ATP acting on P2 receptors in the cNTS plays no major role in the modulation of the baseline fR or in the tachypneic response to chemoreflex activation. We suggest that neurotransmitters other than L-glutamate and ATP are involved in the processing of the tachypneic response of the chemoreflex at the cNTS level. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to assess the hypothesis that dexamethasone (DEX) through the control of nitric oxide (NO) synthesis could regulate the release of vasopressin (AVP), which plays an important role in the regulation of arterial pressure and plasma osmolality. Endotoxemic shock was induced by intravenous (i.v.) injection of 1.5 mg/kg lipopolisaccharide (LPS) in male Wistar rats weighing 250-300 g. After LPS administration, a group of animals were treated with DEX (1.0 mg/kg of body weight), whereas saline-injected rats served as controls. The LPS administration induced a significant decrease in mean arterial pressure (MAP) with a concomitant increase in heart rate (HR) (Delta VMAP: -16.1 +/- 4.2 mm Hg; Delta VHR: 47.3 +/- 8.1 bpm). An increase in plasma AVP concentration occurred and was present for 2 h after LPS administration (11.1 +/- 0.9 pg/mL) returning close to basal levels thereafter and remaining unchanged until the end of the experiment. When LPS was combined with i.v. administration of a low dose of DEX, we observed an attenuation in the drop of MAP (Delta VMAP: -2.2 +/- 1.9 mm Hg) and a decrease in NO plasma concentration [NO] after LPS administration (1098.1 +/- 68.1 mu M) compared to [NO] after DEX administration (523.4 +/- 75.2 mu M). However, this attenuation in the drop of MAP was accompanied by a decrease in AVP plasma concentration (3.7 +/- 0.4 pg/mL). These data suggest that AVP does not participate in the recovery of MAP when DEX is administered in this endotoxemic shock model. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) plays an important role in cancer. A functional single nucleotide polymorphism (SNP) in the 5`-untranslated region of the EGF gene (+61 A>G) may influence its expression and contribute to cancer predisposition and aggressiveness. Aiming to investigate the role of EGF +61 A>G in the susceptibility to glioma and its prognosis, we performed a case-control study with 165 patients and 200 healthy controls from Brazil. Comparisons of genotype distributions and allele frequencies did not reveal any significant differences between the groups. The mean overall survival was 9.2 months for A/A, 8.2 months for A/G, and 7.7 months for GIG. When survival curves were plotted we found that the +61G allele is associated with poor overall survival (p=0.023) but not with disease-free survival (p=0.527). Our data suggest that, although there is no association between the EGF +61 A>G genotype and glioma susceptibility, this SNP is associated with shorter overall survival of glioma patients in the Brazilian population. Nevertheless, future studies utilizing a larger series are essential for a definitive conclusion. (Int J Biol Markers 2009; 24: 277-81)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrasting with increased nitric oxide (NO) formation during healthy pregnancy, reduced NO bioavailability plays a role in preeclampsia. However, no study has examined whether increased NO consumption by enhanced circulating levels of cell-free hemoglobin plays a role in preeclampsia. We studied 82 pregnant women (38 healthy pregnant and 44 with preeclampsia). To assess NO bioavailability, we measured plasma and whole blood nitrite concentrations using an ozone-based chemiluminescence assay. Plasma ceruloplasmin concentrations and plasma NO consumption (pNOc) were assessed and plasma hemoglobin (pHb) concentrations were measured with a commercial immunoassay. We found lower whole blood and plasma nitrite concentrations in preeclamptic patients (-48 and -39%, respectively; both P<0.05) compared with healthy pregnant women. Plasma samples from preeclamptic women consumed 63% more NO (P=0.003) and had 53% higher pHb and 10% higher ceruloplasmin levels than those found in healthy pregnant women (P<0.01). We found significant positive correlations between pHb and pNOc (r=0.61; P<0.0001), negative correlations between pNOc and whole blood or plasma nitrite concentrations (P=0.02; r=-0.32 and P=0.01: r=-0.34, respectively), and negative correlations between pHb and whole blood or plasma nitrite concentrations (P=0.03; r=-0.36 and P=0.01: r=-0.38, respectively). These findings suggest that increased pHb levels lead to increased NO consumption and lower NO bioavailability in preeclamptic compared with healthy pregnant women. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To compare the circulating levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-2, and the MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in preeclampsia and gestational hypertension with those found in normotensive pregnancies. Design and methods: We studied 83 pregnant women (30 healthy pregnant women with uncomplicated pregnancies, 26 with gestational hypertension, and 27 with preeclampsia) and 30 healthy nonpregnant women in a cross-sectional study. MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Results: We found higher plasma pro-MMP-9 levels, and higher pro-MMP-9/TIMP-1 ratios in women with gestational hypertension (95%-CI: 1.031 to 2.357, and 0.012 to 0.031, respectively), but not with preeclampsia, compared with those found in normotensive pregnant women (95%-CI: 0.810 to 1.350, and 0.006 to 0.013, respectively; both P<0.05). We found no significant differences in pro-MMP-2 levels (P>0.05). Conclusions: The higher net MMP-9 (but not MMP-2) activity in gestational hypertension compared with normotensive pregnancy suggests that MMP-9 plays a role in the pathophysiology of gestational hypertension. Conversely, the lack of such alterations in preeclampsia is consistent with the notion that different pathophysiological mechanisms are involved in these hypertensive disorders. (C) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.