937 resultados para Cancer stem cell
Resumo:
RESUME La dissémination extramédullaire des cellules blastiques est une complication majeure des leucémies myéloïdes (LMA) ou lymphoïdes aiguës (LLA). La migration des cellules blastiques dépend de mécanismes semblables à ceux qui régulent la migration des leucocytes dans un site d'inflammation. Parmi ceux-ci, les oligosaccharides fucosylés décorant les ligands des sélectines jouent un rôle clé en interagissant avec les sélectines. PSGL-1 (P-Selectin Glycoprotein Ligand-1) est une protéine de 240 kD, exprimée à la surface des leucocytes, permettant de soutenir le roulement leucocytaire sur les sélectines, le long de la paroi vasculaire. L'interaction de PSGL-1 avec les sélectines nécessite des modifications post-traductionnelles de type sialylation, sulfatation , N et 0-glycosylation. Parmi les enzymes impliqués, les α1,3-fucosyltransférases jouent un rôle important dans la biosynthèse d'oligosaccharides fucosylés, ligands des sélectines (sLex, Lex, VIM-2, CLA). Comme l'expression des α1,3-fucosyltransférases par les cellules blastiques leucémiques n'a pas été étudiée précédemment, nous l'avons recherchée dans 120 cas de leucémies aiguës. Les ARNm des FucT-IV et -VII ont été détectés, par RT-PCR, dans tous les cas testés. L'ARNm de la FucT-IX n'a été observé que dans 40% des leucémies aiguës (48/120). L'ARNm de la FucT-IX est détecté dans 65% des LMA (47/72) et, moins fréquemment, dans 26% des LLA (11/42). A noter que les cas de LLA exprimant la FucT-IX correspondent essentiellement à des LLA secondaires à la transformation d'une leucémie myéloïde chronique ou des LLA de la lignée B de type leucémie/lymphome de Burkitt. L'expression de PSGL-1 et des oligosaccharides fucosylés par les blastes varie significativement parmi les LMA et les LLA : Lex, VIM-2 et sLex étant exprimés plus fréquemment par les myéloblastes que par les lymphoblastes. Le rôle des FucT-IV, -VII et -IX dans la synthèse des Lex, VIM-2, CLA et sLex a été examiné en exprimant l'ADNc de chaque FucT dans des cellules CHO. L'immunophénotypisation des transfectants indique que la FucT-VII synthétise sLex et CLA, mais pas Lex et VIM-2. Lex et VIM-2 sont générés par la FucT-IV. La FucT-IX ne participe qu'à la synthèse de Lex, sa capacité de synthèse de VIM-2 dans les cellules CHO est très faible. Le rôle de la FucT-IX dans la régulation du roulement cellulaire dépendant des sélectines a été testé dans des conditions de flux. Les vitesses de roulement des cellules CHO co-exprimant la FucT-LX, la core-2 01,6-N-acetylglucosaminyltransferase et PSGL-1 sont très élevées sur la P-sélectine (médiane : 497.95 µm/s, n=96) alors qu'elles sont beaucoup plus lentes sur la E-sélectine (médiane 7 µm/s, n=64). Les recrutements sur la E-sélectine des cellules CHO-C2F9PSGL¬1 et des CHO-C2F7PSGL-1 sont similaires (moyenne ± SEM : 127.44 ± 4.38 vs. 151.16 ± 3.16 cellules/min/mm2, n=5). Celui des cellules CHO-C2F4PSGL-1 est par contre plus faible (54.20 ± 2.13 cellules/min/mm2, n=5). Ces résultats indiquent que la FucT-IX est impliquée dans la biosynthèse de Lex, VIM-2 et CLA et qu'elle régule l'interaction des cellules CHO avec la E-sélectine. Contrairement aux FucT-IV et -VII, la FucT-IX ne joue qu'un rôle mineur dans la régulation du roulement cellulaire sur la L- et la P-sélectine. L'expression fréquente de la FucT-IX par les myéloblastes suggère qu'elle pourrait participer avec les FucT-IV et -VII à la régulation de la migration cellulaire dépendant de la E-sélectine. Finalement, ce travail de thèse a été étendu à l'identification des protéines cytoplasmiques qui interagissent avec le domaine cytoplasmique de PSGL-1 et qui pourraient être impliquées dans la transmission de signaux intracellulaires. Les ligands intracellulaires de PSGL-1 seront identifiés par la technique du double hybride qui nous a déjà permis de confirmer que syk et la N-moésine se lient au domaine cytoplasmique de PSGL-1. Des ligands supplémentaires seront identifiés employant une librairie provenant des cellules souches hématopoïétiques comme proie. ABSTRACT Blast cell dissemination is a major complication of acute myeloblastic (AML) and lymphoblastic leukemia (ALL). Blast cell migration is dependent on mechanisms that are similar to those which regulate leukocyte migration into inflammatory lesions. Among them, fticosylated oligosaccharides that decorate selectin ligands play a key role by interacting with selectins. PSGL-1 (P-Selectin Glycoprotein Ligand-1) is a 240 kD glycoprotein constitutively expressed on leucocytes and which supports leukocyte rolling on selectins. PSGL-1 interaction with selectins is dependent on post-translational modifications such as sialylation, sulfation, N- and 0-glycosylation. Among the involved enzymes, the α1,3-fucosyltransferases (FucT) play a major role in generating cell surface glycoconjugates carrying fucosylated oligosaccharides which interact with selectins (sLex, Lex, VIM-2, CLA). Since no information is available on the expression of α1,3-fucosyltransferases by leukemic blast cells, we examined it in 120 cases of acute leukemia. FucT-IV and -VII mRNAs were detected, by RT-PCR, in all tested cases. In contrast, the presence of FucT-IX mRNA was shown in only 40% of patients with acute leukemia (48/120). FucT-IX mRNA was detected in 65% of AML (47/72) and, less frequently, in 26% of ALL (11/42). Importantly, all ALL cases expressing FucT-IX were either secondary leukemia resulting from the transformation of chronic myelocytic leukemia in acute lymphoblastic leukemia or mature B-ALL (FAB L3 subtype or Burkitt lymphoma/leukemia according to WHO classification). FucT-IX was not detected in precursor B or T-ALL. The expression of PSGL-1 and fucosylated epitopes was significantly different among AML and ALL, Lex, VIM-2 and sLex being more frequently expressed by myeloblasts than by lymphoblasts. The role of FucT-IV, -VII and -IX in the biosynthesis of Lex, VIM-2, CLA and sLex was examined by expressing the cDNA of each α1,3-FucT in CHO cells. Immunophenotypic analysis of CHO transfectants indicated that FucT-VII synthesizes sLex and CLA but not Lex or VIM-2. Lex and CLA were generated by both FucT-IV and -IX. FucT-IV and FucT-IX differed in their ability to synthesize VIM-2, FucT-IX being less efficient than FucT-IV. The role of FucT-IX in regulating selectin-dependent rolling was assessed under hydrodynamic flow conditions. P-selectin-dependent interactions were transient and occurred at high velocities (median: 497.95 1,µm/s, n=96). In contrast, much slower rolling velocities were observed on E-selectin (median: 7 µm/s, n=64). The recruitment of CHO-C2F9PSGL-1 and CHO-C2F7PSGL-1 cells was similar on E-selectin (mean ± SEM: 127.44 ± 4.38, n=5 vs 151.16 ± 3.16 cells/min/mm2, n=5). In the other hand, CHO-C2F4PSGL-1 cells were less efficiently recruited on E-selectin (54.20 ± 2.13 cells/min/mm2, n=5). This results indicate that FucT-IX is involved in the biosynthesis of Lex, VIM-2 and CLA and that it confers E-selectin binding activity to CHO cells. By contrast to FucT-IV and -VII, FucT-IX had a minor role in regulating P- and L-selectin-dependent rolling on CHO transfectants. The frequent expression of FucT-IX in myeloblasts suggests that it may participate with FucT-IV and -VII in regulating E-selectin-dependent cell migration into tissues. Finally, this thesis work was extended to the identification of the cytoplasmic proteins interacting with cytoplasmic domain of PSGL-1 that may be involved in transducing intracellular signals. We planned to identify these intracellular ligands of PSGL-1 by using the double hybrid technique and already confirmed that syk and N-moesin bind to the cytoplasmic domain of PSGL-1. Additional PSGL-1 ligands will be sought by the same technique using a CD34+ stem cell library as pray. RESUME DESTINE A UN LARGE PUBLIC : L'adhésion et la migration leucocytaire sont nécessaires à de nombreux processus cellulaires comme la régulation de l'hématopoïèse, mais aussi dans la pathogenèse de l'artériosclérose, des maladies inflammatoires et de la métastatisation des cellules cancéreuses. Les molécules impliquées constituent depuis peu des cibles pour la thérapie du cancer. La migration leucocytaire vers un site d'inflammation dépend de mécanismes complexes, se déroulant en plusieurs étapes, nécessitant l'interaction séquentielle de molécules d'adhésion leucocytaires et endothéliales. Ainsi, chronologiquement, suite à un stimulus inflammatoire, les leucocytes « roulent » sur les cellules endothéliales, sont activées, s'arrêtent et traversent la paroi endothéliale (diapédèse) pour migrer dans les tissus environnants inflammés selon un gradient chimiotactique. La première étape de roulement met en jeu deux molécules principales : PSGL-1 (P-Sélectine Glycoprotéine Ligand-1) du coté des leucocytes et les sélectines du coté de l'endothélium de la paroi vasculaire. L'interaction entre ces deux molécules nécessite des décorations de ces protéines par des sucres, des résidus sulfates et des acides sialiques. Le sucre essentiel à la liaison demeure le fucose qui est attaché aux protéines grâce à des enzymes de la famille des fucosyltransferases. Actuellement, neuf fucosyltransférases humaines ont été identifiées et désignées sous FucT-I à IX. La FucT-IX, dernière fucosyltransférase clonée, a un faible degré d'homologie avec les autres fucosyltransférases mais sa séquence est extrêmement conservée entre les espèces. Ceci traduit son importance par une forte résistance à la pression évolutive. L'examen de son expression au sein de 120 cas de leucémies aiguës a mis en évidence son comportement atypique. En effet, alors que les autres FucTs sont toujours présentes, la FucT¬IX ne s'exprime que dans un cas sur deux en moyenne avec une préférence plus importante pour les leucémies myéloïdes. Ainsi, une étude plus approfondie de cet enzyme à mis en évidence sa capacité à induire une interaction cellulaire plus spécifique de la E-sélectine. Elle décore non seulement des protéines de surface, mais aussi certainement les glycolipides constituant la membrane cellulaire.
Resumo:
OBJECTIVES: Caspofungin was evaluated as first-line monotherapy of invasive aspergillosis (IA) in patients with haematological malignancies and undergoing autologous transplants. METHODS: Adults with proven or probable IA, defined strictly according to EORTC-MSG criteria, were eligible. Those with possible IA were enrolled, but were not evaluable for efficacy unless upgraded to proven/probable disease within 7 days of registration based on investigations performed within 48 h after enrolment. Caspofungin dosage was 70 mg (day 1) followed by 50 mg/day. The primary endpoint was the proportion of patients with complete or partial response at the end of caspofungin therapy in the modified intention to treat (MITT) group; secondary endpoints were response and survival at day 84 and safety. RESULTS: In the MITT group (n = 61), 75% of patients had cancer not in remission (relapsing or refractory), 85% were neutropenic at enrolment and 49% had a Karnofsky score of < or =50. At end of treatment, 1 and 19 patients had complete and partial response, respectively [success rate 33% (20/61)], 9 (15%) achieved stabilization and 31 (51%) had disease progression. One patient was not evaluable. The 6 and 12 week survival rates were 66% (40/61) and 53% (32/60), respectively. Baseline characteristics associated with survival at day 84 were an underlying disease in remission (not relapsing or refractory) and Karnofsky score. Recovery from neutropenia at the end of treatment was also significantly associated with survival. No serious drug-related adverse events or discontinuations due to drug-related adverse events were observed. CONCLUSIONS: Caspofungin provided an observed response rate compatible with the null hypothesis of a true response rate of < or =35%. Underlying disease-related factors had a major impact on results.
Resumo:
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.
Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells.
Resumo:
Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
Resumo:
We conducted a 12-year retrospective study to determine the effects that the community respiratory-virus species and the localization of respiratory-tract virus infection have on severe airflow decline, a serious and fatal complication occurring after hematopoietic cell transplantation (HCT). Of 132 HCT recipients with respiratory-tract virus infection during the initial 100 days after HCT, 50 (38%) developed airflow decline < or =1 year after HCT. Lower-respiratory-tract infection with parainfluenza (odds ratio [OR], 17.9 [95% confidence interval {CI}, 2.0-160]; P=.01) and respiratory syncytial virus (OR, 3.6 [95% CI, 1.0-13]; P=.05) independently increased the risk of development of airflow decline < or =1 year after HCT. The airflow decline was immediately detectable after infection and was strongest for lower-respiratory-tract infection with parainfluenza virus; it stabilized during the months after the respiratory-tract virus infection, but, at < or =1 year after HCT, the initial lung function was not restored. Thus, community respiratory virus-associated airflow decline seems to be specific to viral species and infection localization.
Resumo:
To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.
Resumo:
BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Resumo:
Treatment options for patients with high-risk acute myeloid leukemia (AML) include high-dose chemotherapy regimens in combination with allogeneic hematopoietic stem cell transplantation, which takes advantage of the donor T-cell-mediated graft-versus-leukemia effect. Together with beneficial responses observed in assays targeted at leukemia-associated antigens (LAA), this encouraged research on cancer vaccines and adoptive cellular therapies in AML. The receptor for hyaluronic acid-mediated motility (RHAMM, CD168) was identified as one of the most promising LAA in AML. Thus far, little is known about in situ expression in leukemic bone marrow blasts or the prognostic role of RHAMM and its interaction partners in AML. We immunohistochemically analyzed the expression and prognostic significance of RHAMM on trephine bone marrow biopsies from 71 AML cases that had been evaluated for cytogenetics and presence of FLT3-internal tandem duplications and NPM1 mutations. Fifty-five patients (77%) were treated with curative intent, while 16 (23%) received the most appropriate supportive care. Twenty of 71 (28%) AML cases were considered RHAMM+. Receiver operating characteristic curves showed significant discriminatory power considering overall survival (OS) in AML patients treated curatively for RHAMM (p = 0.015). Multivariable analysis revealed that expression of RHAMM in >5% of leukemic blasts identifies a subgroup of curatively treated cases with adverse OS independent of failures to achieve complete remission. RHAMM not only represents a promising LAA with specific T-cell responses in AML but, if assessed in situ on blasts, also a probable prognostic factor.
Resumo:
This overview summarizes recent data on emerging viruses after hematopoietic cell transplantation (HCT), including adenovirus, BK virus, human metapneumovirus (hMPV), and human herpesvirus (HHV) 6. The increased recognition of these infections is due to improved molecular detection methods, increased surveillance and more profound immunosuppression in the host. Adenovirus can cause serious disease especially in T-cell depleted transplant recipients. Adenovirus viremia is an important risk factor for disease in this setting. BK virus has been associated with hemorrhagic cystitis in HCT recipients. BK viremia is significantly associated with hemorrhagic cystitis. hMPV shows a seasonal distribution and can cause fatal pneumonia in HCT recipients. hMPV may be the etiology of some cases previously categorized as idiopathic pneumonia syndrome. HHV-6 commonly leads to viremia in HCT recipients. HHV-6 has been strongly associated with encephalitis and delayed platelet engraftment. Prospective studies are needed to further examine epidemiology, disease associations, and management strategies for these viruses.
Resumo:
Purpose: To characterize the clinical, morphological and immunohistological features of epithelial ingrowth cells after laser in situ keratomileusis (LASIK) or Automated Lamellar Therapeutic Keratoplasty (ALTK) with specific reference to current markers of corneal stem cells.Methods: Four patients were included in this interventional non-comparative case series. Full ophthalmologic examination was performed. Epithelial ingrowth specimens from 4 patients were removed surgically and immunostained for cytokeratin 3 (CK3), cytokeratin 15 (CK15), cytokeratin 19 (CK19), Muc5AC, p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 and Ki-67.Results: The time interval between LASIK/ALTK and ingrowth surgical removal was, 3, 11, 15 and 36 months. On slit lamp examination, early epithelial ingrowth appeared as whitish pearls and late epithelial ingrowth as confluent whitish opacities. Microscopically, the epithelial ingrowths showed features of a squamous non keratinizing epithelium. No mitotic figure was seen. Ki-67 labelling of 3 cases showed a proliferation index of 3-4%. Superficial squamous cells strongly expressed CK3. Expression of C/EBPδ, BCRP/ABCG2 and p63α was seen in more than 70% of cells and Bmi-1 was positive in up to 30% of cells in the specimens tested. There was no expression of CK19 or CK15.Conclusions: Epithelial ingrowths can persist for up to 3 years following LASIK surgery. They show a capacity for self-renewal and corneal differentiation. Besides, they express p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 which have been proposed as markers of stem cell phenotype. These observations suggest that post-LASIK/ALTK epithelial inclusions could derive from stem-like cells located in the peripheral corneal epithelium.
Resumo:
Adult stem cells are instrumental for renewal, regeneration, and repair. Self-renewal and the capacity to generate a tissue for an extended period of time (theoretically a life time) are fundamental properties of adult stem cells that allow longterm tissue reconstruction from a single stem cell as experimentally demonstrated with the bone marrow and the skin. Moreover, human epidermal stem cells (holoclones) can be extensively expanded and manipulated in culture before they are transplanted. We have taken advantage of these unique capacities to demonstrate the feasibility of a single epidermal stem cell approach for ex vivo gene therapy using recessive dystrophic epidermolysis bullosa (RDEB) as a model system. We have demonstrated that is possible to reconstruct a functional epidermis and anchoring fibers from the progeny of a single RDEB epidermal stem cell transduced with a Col7a1 cDNA by means of a SIN retrovirus. Demonstrations of safe proviral insertion, absence of tumorogenicity and of dissemination of the transduced engrafted cells meet regulatory affairs safety requirements.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
BACKGROUND: High-dose therapy with autologous stem cell support after standard dose induction is a promising approach for therapy of primary central nervous system lymphoma (PCNSL). High-dose methotrexate (HD-MTX) is a standard drug for induction of PCNSL; however, data about the capacity of HD-MTX plus granulocyte-colony-stimulating factor (G-CSF) to mobilize hemopoietic progenitors are lacking. STUDY DESIGN AND METHODS: This investigation describes the data from stem cell mobilization and apheresis procedures after one or two cycles of HD-MTX for induction of PCNSL within the East German Study Group for Haematology and Oncology 053 trial. Eligible patients proceeded to high-dose busulfan/thiotepa after induction therapy and mobilization. RESULTS: Data were available from nine patients with a median age of 58 years. The maximal CD34+ cell count per microL of blood after the first course of HD-MTX was 13.89 (median). Determination was repeated in six patients after the second course with a significantly higher median CD34+ cell count of 33.69 per microL. Five patients required two apheresis procedures and in four patients a single procedure was sufficient. The total yield of CD34+ cells per kg of body weight harvested by one or two leukapheresis procedures was 6.60 x 10(6) (median; range, 2.68 x 10(6)-15.80 x 10(6)). The yield of CD34+ cells exceeded the commonly accepted lower threshold of 3 x 10(6) cells per kg of body weight in eight of nine cases. Even in the ninth, hemopoietic recovery after stem cell reinfusion was rapid and safe. CONCLUSION: HD-MTX plus G-CSF is a powerful combination for stem cell mobilization in patients with PCNSL and permits safe conduction of time-condensed and dose-intense protocols with high-dose therapy followed by stem cell reinfusion after HD-MTX induction.