1000 resultados para CONDENSED MEDIA
Resumo:
Polymer materials find application in optical storage technology, namely in the development of high information density and fast access type memories. A new polymer blend of methylene blue sensitized polyvinyl alcohol (PVA) and polyacrylic acid (PAA) in methanol is prepared and characterized and its comparison with methylene blue sensitized PVA in methanol and complexed methylene blue sensitized polyvinyl chloride (CMBPVC) is presented. The optical absorption spectra of the thin films of these polymers showed a strong and broad absorption region at 670-650 nm, matching the wavelength of the laser used. A very slow recovery of the dye on irradiation was observed when a 7:3 blend of polyvinyl alcohol/polyacrylic acid at a pHof 3.8 and a sensitizer concentration of 4.67 10 5 g/ml were used. A diffraction efficiency of up to 20% was observed for the MBPVA/alcohol system and an energetic sensitivity of 2000 mJ/cm2 was obtained in the photosensitive films with a spatial frequency of 588 lines/mm.
Resumo:
This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.
Resumo:
Farm communication and extension programs are vital part of the farm development attempts. Electronic media plays a major role in farm extension activities. Kerala, the consumer state, which was a complete agricultural state in pre-independence period, is the sprouting land of agricultural extension and publication activities in print media. Later AIR (All India Radio) farm programs and farm broadcasting of Doordarshan enriched the role of electronic media in farm extension activities. The media saturated southern state of India received this new electronic media farm communication revolution whole heartedly. However, after 1990, Kerala witnessed a flood of private T V channels and currently there are 24 channels in this regional language, named Malayalam. All major news and entertainment channels are broadcasting farm programs. Farm programs of AIR and Doordarshan, broadcasted in Malayalam language, have been well accepted to the farmers‘ in Kerala. However, post-independence period, witnessed the formation of Kerala state in Indian Union and the first ballot-elected communist Government started its administration. After the land reform bills, the state witnessed a gradual decrease in agricultural production. Even if it is not reflected much in the attitude and practices of farm community and farm broadcast of traditional electronic broadcasting, a change is observable after the post-liberalization era of India. Private Television channels, which were focused on entertainment value of programs, started broadcasting farm programs and the parameters of program production went through certain changes. In this situation, there is ample relevance for a study about the farm programs of electronic media in terms of a comparative study of audience perception. The study is limited in the state of Kerala as it is the most media saturated state in India. The study analyzes the rate, nature and scope of adoption of farming methods transmitted through electronic media (T.V. and Radio) in Malayalam language.All kinds of Farm programs including comprehensive program serials, success stories, seasonal cropping methods, experts opinion, been analyzed on the basis of the following objectives. To find whether propagating new farm methods through farm programs in electronic media or the availability of adequate infrastructure and economic factors make a farmer to adopt a new farming method. To find which electronic media has more influence on farmers to adopt agricultural programs. To find which form of electronic media gets better feedback from farmers To find out whether the programs of T.V. or Radio is more acceptable to farmers than the print media. To find whether farmers gets the message through their preferred medium for the message. The researcher recorded opinions from a panel of agricultural officers, farm Information officers, agro extension researchers and experts. According to their opinions and guidelines, a pilot study is designed and conducted in Kanjikuzhy Panchayath, in Alappuzha district, Kerala. The Panchayath is selected by considering its ideal nature of being the sample for a social Science research. Besides, the nature of farming in the Panchayath, which devoid of the cultivation of cash crops also supported its sample value. As per the observations from the pilot study, researcher confirmed the Triangulation method as the methodology of research. The questionnaire survey, being the primary part contained 42 Questions with 6 independent and 32 dependent variables. The survey is conducted among 400 respondents in Idukki, Alappuzha and Pathanamthitta districts considering geographical differences and distribution of different types of crops. The response from a total of 360 respondents, 120 from each district, finally selected for tabulation and data analysis.The data analysis, based on percentage analysis, along with the results from focus group discussion among a selected group of 20 farmers, together produced the results as follows. Farmers, who are the audience of farm programs, have a very serious approach towards the medium. They are maintaining a critical point of view towards the content of the programs. Farmers are reasonably aware about the financial side of the programs and the monitory aspirations of both private and Government owned Television channels. Even though, the farmers are not aware on the technical terminology and jargons, they have ideas about success stories, program serials and they are even informed about channels are not maintaining an audience research section like AIR. Though the farmers accept Doordarshan as the credential source of farm information and methods, they are inclined to the entertainment value of programs too. They prefer to have more entertainment value for the programs of Doordarshan. Surprisingly, they have very solid suggestions on even about the shots which add entertainment value to the farm broadcasting methods of Doordarshan. Farmers are very much aware about the fact that media is just an instrument for inspiration and persuasion. They strongly believe that the source of information and new methods is agricultural research and an effective change happens only when there are adequate infrastructure and marketing facilities, along with the proper support from Government agricultural guideline and support systems like Krishi Bhavans. They strongly believe that media alone cannot create any magic in increasing agricultural production. Farmers are pointing out the lack of response to the feedback and queries of farmers on farming methods, as an evidence for the difference in levels of commitment of Government and private owned Television channels.Farmers are still perceiving AIR farm programs are far more committed to farmers and farming than any other electronic medium. However, they are seriously lacking Radio receivers with medium wave reception facility. Farmers perceive that the farming methods on new crops are more adoptable than the farming methods of traditional crops in both private and Government owned Television channels. There are multiple factors behind this observation from farmers. Farmers changed in terms of viewing habits and they prefer success stories, which are totally irrelevant and they even think that such stories encourage people to go for farming and they opined that such stories are good sources of inspiration. However, they are all very much sure about the importance and particular about the presence of entertainment factor even in farm programs. Farmers expect direct interaction of any expert of the new farming method to implement the method in their agriculture practices. Though introduction of a new idea in the T.V. is acceptable, farmers need the direct instruction of expert on field to start implementing the new farming practices Farmers still have an affinity towards print media reports and agricultural pages and they have complaints to print media on the removal of agricultural information pages from news papers. They prefer the reports in print media as it facilitates them to collect and refer articles when they need it. Farmers are having an eye of doubt about the credibility of farm programs by private T.V. channels. Even if they prefer private Television channels for listening and adopting new farming methods and other farm information, they scrutinize programs to know whether they are sponsored programs by agrochemical or agro-fertilizer manufacturer.
Resumo:
Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed
Resumo:
Tourism is an industry which is heavily dependent on marketing. Mouth to mouth communication has played a major role in shaping a number of destinations.This is particularly true in modern parlance.This is social networking phenomenon which is fast spreading over the internet .Many sites provide visitors a lot of freedom to express their views.Promotion of a destination depends lot on conversation and exchange of information over these social networks.This paper analyses the social networking sites their contribution to marketing tourism and hoapitality .The negetive impacts phenomena are also discussed
Resumo:
Magnetic materials meant for audio/video recording applications necessitate that polycrystalline materials be in acicular shape. So preparation of acicular precursors for magnetic storage materials assumes significance. The employment of aqueous solutions do not produce needle shape crystallites. Glycerol is one of the complexing media used for the precipitation of ferrous oxalate dihydrate. An inexpensive method using starch for preparation of acicular particles is described. The influence of an additive namely Gd on acicularity is also investigated
Resumo:
Incorporation of silver ions into a dye-sensitized poly(vinyl alcohol)/acrylamide photopolymer is observed to give better performance compared to other metal-ion-doped photopolymer holographic recording media. Plane-wave transmission gratings were recorded in the photopolymer films using a He–Ne laser, and various holographic parameters were optimized so as to explore maximum potential of the material for various holographic applications. Silver-doped films showed good energy sensitivity, and gratings recorded in optimized film exhibited a diffraction efficiency of more than 75%. The potential of the material for holographic data storage applications is also studied using peristrophic multiplexing
Resumo:
Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.